
NaNofuzz: A Usable Tool for Automatic Test Generation

Matthew C. Davis
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
mcd2@cs.cmu.edu

Sangheon Choi
Rose-Hulman Institute of Technology

Terre Haute, Indiana, USA
chois3@rose-hulman.edu

Sam Estep
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
estep@cmu.edu

Brad A. Myers
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
bam@cs.cmu.edu

Joshua Sunshine
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
sunshine@cs.cmu.edu

1

2

3

5
7

{

{6
4

Figure 1: The NaNofuzz user interface in the Visual Studio Code IDE provides one-click test generation for TypeScript programs.

Key UI elements: (1) AutoTest button above a function signature, (2) NaNofuzz testing window beside the program under test,

(3) Customizable input parameters with default values, (4) Test button to start NaNofuzz, (5) Advanced options, (6) Categorized

testing results with likely bugs prioritized in the display, (7) Pin button to add test cases to the test suite in Jest format.

ABSTRACT

In the United States alone, software testing labor is estimated to

cost $48 billion USD per year. Despite widespread test execution

automation and automation in other areas of software engineering,

test suites continue to be created manually by software engineers.

We have built a test generation tool, called NaNofuzz, that helps

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616327

users find bugs in their code by suggesting tests where the output

is likely indicative of a bug, e.g., that return NaN (not-a-number)

values. NaNofuzz is an interactive tool embedded in a development

environment to fit into the programmer’s workflow. NaNofuzz tests

a function with as little as one button press, analyses the program to

determine inputs it should evaluate, executes the program on those

inputs, and categorizes outputs to prioritize likely bugs. We con-

ducted a randomized controlled trial with 28 professional software

engineers using NaNofuzz as the intervention treatment and the

popular manual testing tool, Jest, as the control treatment. Partici-

pants using NaNofuzz on average identified bugs more accurately

(? < .05, by 30%), were more confident in their tests (? < .03, by

20%), and finished their tasks more quickly (? < .007, by 30%).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1114

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-2366-8436
https://orcid.org/0000-0002-7901-8777
https://orcid.org/0000-0002-7107-7043
https://orcid.org/0000-0002-4769-0219
https://orcid.org/0000-0002-9672-5297
https://doi.org/10.1145/3611643.3616327

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ma�hew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua Sunshine

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Human-centered computing→ User studies.

KEYWORDS

Empirical software engineering, user study, software testing, human

subjects, experiments, usable testing, automatic test generation

ACM Reference Format:

Matthew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua

Sunshine. 2023. NaNofuzz: A Usable Tool for Automatic Test Generation. In

Proceedings of the 31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3611643.3616327

1 INTRODUCTION

Software testing often intends to prevent bugs of various forms

from affecting users and operations [30, 47, 64]. These efforts are

estimated to represent 28% [6] to 50% [64] of the $174 billion USD

annual [45] 2021 labor cost of US software engineering profession-

als. While each 2% reduction in testing effort may save $1 billion

USD per year in labor1, engineers largely create test suites man-

ually [4, 21, 24, 35]. An important problem is therefore how to

provide automation support for engineers creating test suites.

Automatic Test sUite Generation (ATUG) tools attempt to

fill this gap by generating persistent test cases using various tech-

niques and objectives (e.g., test suite size, code coverage, readability,

mutants killed, etc.). However, most existing tools lack evidence

that they improve a software engineer’s ability to create effective

test suites [24, 51], and these tools are not broadly adopted in in-

dustry [4, 51]. For example, when the ATUG tool EvoSuite was

evaluated with humans, it showed a penalty for using it [24]. Evo-

Suite uses the (buggy) software under test as its test oracle; as all

tests “pass,” the engineer must read the generated tests to find and

fix the “erroneous” tests. The negative human evaluation result

implies that the new task of finding and fixing invalid tests may be

more difficult than the old task EvoSuite seeks to replace: manually

creating a test suite. Subsequent research has tried to improve these

results by improving test suite readability [28, 42, 49, 57, 60], but

evidence is unclear that these help engineers relative to manual test

suite creation. We argue that a human-focused approach may be

more appropriate for designing ATUG tools so that they improve

engineers’ ability to find bugs and create test suites.

We present NaNofuzz, a human-focused ATUG tool that is

integrated into the Visual Studio Code integrated development en-

vironment (IDE). NaNofuzz allows a software engineer to test a

function with as little as one click. It accomplishes this by analyz-

ing the function signature to determine what types of inputs the

function accepts. It uses heuristics to propose default value ranges

for each input and allows the engineer to refine those ranges, if

necessary. NaNofuzz rapidly generates test cases by sampling the

input domain of the function. As NaNofuzz generates and executes

test cases, it automatically categorizes and organizes the test results

in the engineer’s IDE using a set of heuristics to identify likely

1$174 billion · 28% [6] · 2% = $0.97 billion; $174 billion · 50% [64] · 2% = $1.74 billion

problematic output values. The test cases more likely to be elicit-

ing bugs are more-prominently displayed to draw the engineer’s

attention. The engineer may then add test cases to the test suite.

We conducted a randomized controlled human trial with 28

professional software engineers using NaNofuzz as the intervention

treatment and the popular manual testing tool, Jest [62], as the con-

trol treatment. Participants using NaNofuzz on average identified

bugs more accurately (? < .05, by 30%), were more confident in

their tests (? < .03, by 20%), and finished their tasks more quickly

(? < .007, by 30%).

This paper contributes: (i) NaNofuzz, a human-focused automatic

test generation tool; and (ii) an experimental human evaluation of

NaNofuzz that provides evidence that NaNofuzz improves software

engineers’ ability to generate test cases for a test suite.

2 DEFINITIONS

This paper uses a number of terms. A test oracle, proposed by

Howden [29], allows one to “check the correctness of test output.”

“Program under test” is abbreviated as PUT, and “software engi-

neer” is often shortened to engineer. Test suite size measures the

number of test cases or statements within the test suite. A mutant

is a modification made to the original program through simple and

intentional syntax changes that aims to create faults [31]. Mutants

are killed when a test case detects differences between the mu-

tant and the original code. Code coverage measures what code

is executed during a test [65]. A fuzzer is a tool that exercises a

PUT with randomly-determined inputs to elicit bugs [38, 40]. An

opaque box fuzzer has no knowledge of the internals of the PUT

and generates test cases based on input/output behavior [38].

3 NANOFUZZ

NaNofuzz is intended to help engineers find incorrectness during

development or testing. Salient aspects of NaNofuzz are described

below. We reference the interface elements shown in Figure 1.

(1) AutoTest button. NaNofuzz decorates exported TypeScript

functions displayed in the IDE’s editor with an “AutoTest” button.

Clicking the button opens NaNofuzz in a side window (2).

(2) NaNofuzz window. The testing window opens beside the func-

tion under test so that both the code and its tests are visible.

(3) Input parameters. NaNofuzz analyzes the function signature to

determine its inputs, types, and default input ranges. The human-in-

the-loop may adjust these ranges if desired. To minimize cognitive

load, inputs are displayed in a TypeScript-like format.

(4) Test button. This button starts the test, which uses a stochastic,

opaque-box fuzzer with an implicit oracle that classifies the follow-

ing as likely errors: runtime exceptions, non-termination within

a configurable time threshold, and outputs containing null, NaN,

infinity, or undefined. When the fuzzer terminates, testing results

are displayed in the results grid (6).

(5) Options. This button toggles the display of advanced options,

which are shown in Figure 2 and allow the engineer to, e.g., adjust

the fuzzer’s runtime. By default, the fuzzer returns results in 3

seconds, and runs at most 1,000 tests to ensure the tool provides

rapid feedback to maintain the engineer’s attention. Longer testing

sessions may be configured.

1115

https://doi.org/10.1145/3611643.3616327

NaNofuzz: A Usable Tool for Automatic Test Generation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Figure 2: NaNofuzz with “More Options” Pane

(6) Results. This pane displays a set of relevant category tabs, each

containing a grid of test results. The categories are: non-termination,

runtime exception, erroneous outputs (e.g., null, NaN, infinity, unde-

fined), and passed tests. Tabs containing no result are not displayed.

To direct the engineer’s attention to tests that are likely to be errors,

the tabs are organized in the order shown above. We opted to dis-

play tests and results in table form rather than as code to minimize

the engineer’s reading effort.

(7) Pin button. After NaNofuzz displays test results, the engineer

may add any of the generated tests to the test suite by pressing the

Pin button next to the test result on the results grid (6). In Figure 1,

the engineer has pinned two tests. When pinned, NaNofuzz saves

the unit test in Jest format to the file system. When the test button

(4) is pressed again, all pinned tests are re-executed with their test

results displayed at the top of the grid above any newly-generated

tests. If a test is un-pinned, then the Jest unit test is removed from

the file system.

4 SCOPE AND LIMITATIONS

NaNofuzz has a number of important limitations, but it is a useful

vehicle for evaluating how a human-focused automatic testing tool

might affect an engineer’s ability to generate a test suite. As men-

tioned above, the experimental version of NaNofuzz in this study

uses an implicit oracle such that it is currently not possible to specify

desired result values for a test case. This version of NaNofuzz also

only supports exported TypeScript functions that have parameters

of types: finite numbers (integers and floats), strings, booleans, lit-

eral object types, n-dimensional arrays of any of the previous types,

as well as optional and mandatory parameters. Type references are

not supported. In addition, default input ranges are determined us-

ing type-based heuristics. We plan to broaden support as NaNofuzz

matures.

5 EXPERIMENT

We provide an overview of the randomized controlled trial in

Figure 3 and the data and methods in Table 1. Sadowski and Zim-

mermann [58] describe software engineer productivity in terms

of three dimensions—quality, satisfaction, and velocity. This paper

investigates the extent to which NaNofuzz impacts three testing

measures inspired by these dimensions: bug identification accuracy,

confidence, and task time. This study aims to answer three variants

of the question: “Relative to standard practice (e.g., Jest), to what

extent may NaNofuzz affect - ?” where the values of - are:

RQ1. - = the number of bugs an engineer accurately identifies

RQ2. - = the engineer’s confidence in the test activity

RQ3. - = the engineer’s time on the testing task

Hypothesis: We hypothesize that NaNofuzz improves software

engineers’ ability to create tests by automatically supporting two

tasks that are difficult for engineers: identifying edge cases and

understanding how outputs relate to inputs.

This experiment uses a between-subjects design. Human eval-

uations in software engineering are rare [34], and recruiting a

sufficient number of professional software engineers to achieve

statistical power in a human evaluation is more rare. One approach

to reduce the number of participants required for statistical signifi-

cance is to select a within-subjects design with repeated measures

such that participants use both treatments to complete the same or

matched tasks. Fatigue and learning effects are important problems

that may often be addressed by counter-balancing the task/treat-

ment sequence. While such a design would reduce the recruiting

burden, a within-subjects repeated-measures design is not suitable

for this study due to the task’s high learning effect: once a partici-

pant discovers a bug, they do not quickly forget it. Consequently, a

between-subjects design is more appropriate, despite its offering

less statistical power for the same number of participants.

In our design, participants use both treatments, but unlike a

within-subjects design they did so on different tasks. We could

therefore ask participants to rate relative usability and provide

comparative feedback about both treatments to provide diagnostic

insight into why one treatment might have a measured effect. Since

we collected timing data, a think-aloud protocol was not appropri-

ate. Instead, we collected qualitative data in the post-survey. Before

the study began, we piloted the study with 9 pilot participants to

refine the tasks and instructions. This study was reviewed by our

Institutional Review Board.

5.1 Treatments

Jest [62] is an open-source TypeScript and JavaScript unit-testing

framework. As of October 2022, Jest had 50 million monthly down-

loads, was used in over 3.8 million public GitHub repositories, and

was used at Meta (Jest’s creator), Twitter, Spotify, Airbnb, and many

other companies [62]. Thus, Jest represents the state-of-the-art in

manual test suite generation. Engineers largely create test suites

manually rather than using ATUG tools [4, 21, 24, 35] such as Evo-

Suite, which one study showed had disappointing results when

compared against a manual testing tool [24]. Consequently, it is

important to compare ATUG tools with the tools that practitioners

are actively using in practice, even if those widely-used tools lack

automation.

To control for differences that we did not want to measure, we

used Jest Runner [63], which allowed participants to run Jest via

a GUI button in the IDE, similar to the way they run NaNofuzz.

Similarly, our protocol instructed participant to open the Jest tests

“to the side” as shown in Figure 4 so that both code and tests were

simultaneously visible, similar to NaNofuzz. To minimize typing,

1116

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ma�hew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua Sunshine

������������

�����
������

�������
���������
��

�
�
	�

�������
���������
��

�
�
	�

��
��
�

�������� ������ �������� ������ ������ ������

���� ���� ���� ���� ���� ���� ���� ����

����

���������
������������������������
���

 ���
�������­��������������

�
� ��­�����������
�������������
 ��
� ���������
����
���
��������
	 ��������������

���������
������������������������������
� �����������������������­
������
� ���������������������­
������
� ������������������
�����­
������

���� ���� ���� ���� ���� ���� ����

Figure 3: Visualization of study task sequence (see Section 5). Participants are randomly assigned by pairs into Group A or

Group B, which determines the treatment for each task. Shaded tasks (e.g., tutorials) are not time-limited.

Table 1: Measurements, Instruments, and Methods

Collection Research Productivity

ID Measurement Instrument Step Question Dimension† Analysis Method(s)

1 Count of Bugs Elicited Scoring Rubric Task RQ1.1 Quality ANOVA, Fisher’s exact test* [53]

2 Bug Descr. Accuracy Scoring Rubric Task RQ1.2 Quality ANOVA, Fisher’s exact test* [53]

3 Engineer Confidence Likert Scale Task RQ2 Satisfaction ANOVA, Fisher’s exact test* [53]

4 Task Time Elapsed Time (clock) Task RQ3 Velocity ANOVA, paired C-test* [53]

5 Tool Usability Sys. Usability Scale [9] Post-Survey Diagnostic n/a Direct comparison

6 Task Realism Likert Scale Post-Survey Diagnostic n/a Direct comparison

7 Tool Comparison Free-form Survey Post-Survey Diagnostic n/a Inductive Thematic Analysis [8]

†=As defined by Sadowski and Zimmermann [58]; *=two-tailed

Table 2: Programs Under Test

Program

Task Name Found On Lines Error Class Bugs

1 6.ts Stack Overflow 3 exception 1

2 3.ts Stack Overflow 4 NaN output 1

3 7.ts Stack Overflow 12 divide by 0 1

4 11.ts Rosetta Code 14 exception 1

5 14.ts Stack Overflow 15 infinite loop 1

6 10.ts GitHub 57 NaN output 2

we provided Jest participants a single passing Jest test case and

instructed participants to copy and paste from it.

NaNofuzz is the ATUG tool we created and described in Section 3.

To minimize influence on participants, we did not disclose during

the session that we created NaNofuzz; rather, we characterized both

tools as ones participants might have used previously. Participants

were not allowed to use the internet during the study, and we called

NaNofuzz “AutoTest” to obscure its origin.

5.2 Tasks

As shown in Figure 3, the experiment included two tutorials—one

for each treatment—and six testing tasks. The six tasks varied: (a)

the program under test (Table 2) according to our study protocol and

(b) the treatment (Section 5.1) according to the participant’s random

group assignment and task number. In each of the six tasks, the

participant used Visual Studio Code and the treatment to generate

test cases and elicit bugs in the program under test.

Upon starting the task, we verbally instructed the participant to

open the PUT in the IDE and provided verbal instructions from a

script explaining that the goal of the task was to find inputs to the

program that cause any of the following results: null, undefined,

NaN, infinity, a runtime exception, or apparent non-termination.We

specified which treatment to use and, if Jest, directed the participant

to open the Jest test file “to the side” so that both the tests and the

code under test were simultaneously visible. We reminded each

participant that the comment at the top of the program specified

the allowed input values. After providing the instructions and the

participant indicated they were ready, we manually recorded the

start time. Using Zoom, we monitored each participant’s screen and

audio to ensure use of the intended treatment and program. During

the task, the participant tested the program using the designated

1117

NaNofuzz: A Usable Tool for Automatic Test Generation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

treatment and created test cases. At the end of 15 minutes or when

the participant was done creating the tests, we recorded the stop

time and verbally instructed the participant to complete a post-task

survey where they typed up their understanding of the generalized

input domains where bugs occurred and their confidence in the

testing activity according to a 5-point Likert scale.

Programs Under Test. We utilized Ko et al.’s [34] suggestion to

use “found” tasks: we searched GitHub, Stack Overflow, and Rosetta

Code and found 14 faulty TypeScript programs that violate an im-

plicit oracle in some circumstances due to the presence of bugs. As

some programs were code fragments, we added or edited code nec-

essary for the program to run.We added type annotations as-needed

to avoid distracting IDE warnings and provided a description of

each program, its allowed inputs, and its expected outputs. We ran

a series of pilots with students using various combinations of the 14

buggy programs. These pilots allowed us to: (i) eliminate programs

that pilot users could not finish testing in 15 minutes regardless of

the treatment used, and (ii) determine the relative difficulty of the

remaining programs. Based on these observations and pilot partici-

pant feedback, we selected the six programs under test described

in Table 2 and sequenced them according to increasing difficulty.

Task Infrastructure. Deployment of experimental study software

to remote software engineers is difficult [13]. To avoid some of

these difficulties, we hosted the tasks on GitHub Codespaces [26],

which provides a web-based VS Code IDE and VM such that a

remote software engineer may edit, run, test, and debug code using

a complete IDE inside a web browser.

Tutorials. We designed the NaNofuzz and Jest tutorials to be similar

such that both have two short exercises and are roughly the same

length. While participants spent a mean 93 seconds longer in the

NaNofuzz tutorial, this may be due to 68% (19/28) of participants

entering the study session with previous Jest experience.

5.3 Participants

Finding and recruiting a large and/or representative sample of pro-

fessional software engineers is difficult [2, 5, 13, 34]. We recruited

professional software engineers via LinkedIn, Twitter, Mastodon,

and e-mail—both via direct messages and via public postings that

described our study and included a link to the screener survey,

which screened for participants: (i) in the United States or Canada

(as required by our IRB), (ii) who were over 18, (iii) had at least

one year of professional programming experience, and (iv) had

programming experience with TypeScript. We offered participants

a $30 Amazon gift card and did not offer bonuses. When recruiting

on LinkedIn, we selected participants located in the United States

and Canada with TypeScript experience and more than one year of

professional software engineering experience in their profiles. We

asked e-mail and direct message recipients to recruit others they

thought might be open to participating; however, we did not offer

incentives to do so.

From November 4, 2022 to January 6, 2023, the screener survey

received 552 responses and automatically classified 99 responses

as likely being eligible, of which 35 were humans that scheduled

sessions and 28 completed the study. Four consented participants

are excluded from the data set: one was unable to access their

GitHub account and was unable to start the study, another did not

follow protocol, and two more had to leave unexpectedly without

finishing the session.

In the screener survey, potential participants self-reported: gen-

der; professional software engineering experience; hours of coding

per week; and experience with testing tools, TypeScript, Jest, and

VS Code. The screener included timed questions recommended

by Danilova [12] to eliminate non-programmers. We also created

timed TypeScript and Jest questions, which we used to identify bots.

The final page of the screener included a Google Calendar link that

allowed the participant to choose a time slot.

Participants were assigned to groups usingmatched pair ran-

domassignment and a physical coin flip.We classified participants

by self-reported professional coding experience: 1–5 years, 6–10

years, and 11+ years. When a participant scheduled a session, we

assigned a participant number and checked to see if a previous

participant with the same experience level was awaiting a match.

If no participant with the same experience level was awaiting a

match, we flipped the coin to determine the participant’s group,

and the participant was flagged as needing a match. When the next

participant with the same experience level scheduled a time slot,

the new participant would be matched to the previous one such

that one participant would be randomly assigned to group � and

the other randomly assigned to group �.

Participant demographics were as follows: 5 participants identi-

fied as female, 21 as male, and 2 did not disclose; 4 participants had

10+ years of professional experience, 4 had 6–9 years, and 20 had

1–5 years; 11 participants reported spending 30+ hours coding per

week, 13 reported spending 10–29 hours per week, and 4 reported

exactly 5 hours per week. A table showing the demographics of

each participant is provided in the supplementary materials.

5.4 Measurements

The experiment includes seven measurements as shown in Table 1:

(1) Count of bugs elicited. Prior to the study, the first three authors

created an unambiguous rubric that listed the bugs in each task

program and the input sets that elicit each bug. The participants’

tests were evaluated by the first or third author against this rubric

to determine how many bugs were elicited.

(2) Bug description accuracy. After generating the tests, the par-

ticipant was asked to type in the general circumstances under which

each bug may be elicited. For example, suppose we had a program

that throws a runtime exception for integers > 1. According to the

rubric, a full score was given for stating the entire set accurately

(integers>1). A half score was given if the participant’s set included

only part of the rubric’s described subset (e.g., integers>2). Finally,

a half score was deducted if the participant’s set included allowed

inputs that did not elicit the bug (e.g., integers<1).

(3) Engineer confidence. At the end of each task, the participant

reported their degree of confidence in identifying the inputs under

which the bugs are elicited using a 5-point Likert scale.

(4) Task time. At the start of each task, the researcher recorded

the begin time manually. When the participant finished creating

tests or ran out of time, the researcher recorded the end time. Task

time was measured in seconds.

1118

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ma�hew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua Sunshine

1

2

Figure 4: VS Code Editor (1) with Jest Tests (2) Opened “to the side.”

(5) Tool usability. The System Usability Scale (SUS) [9] is a stan-

dard measure of system usability. In the post-survey, participants

rated both treatments using the standard SUS questions, which

were scored according to the procedure described by Brooke et al.

[9]. The order of the treatments in the survey was randomized to

counter-balance ordering effects.

(6) Task realism. Participants rated their agreement with the state-

ment, “I thought the testing tasks in this study resemble tasks I

might encounter outside the study,” using a Likert scale.

(7) Tool comparison. Participants answered free-form compara-

tive survey questions regarding the treatments’: (i) effectiveness in

testing, (ii) ease of use, (iii) fit with the participant’s test and debug

workflow, and (iv) opportunities for improvement.

5.5 Data Analysis

As shown in Table 1, this mixed-methods experiment quantitatively

analyzed task data to answer the research questions. A diagnostic

explanatory analysis was also designed to help explain or explore

the primary quantitative results. We discuss the analysis for each

measurement from Figure 3 and Table 1 below.

(1) Count of bugs elicited. We used a randomized matched pair

design (see Section 5.3) based on years of professional experience.

From 28 total participants, this yielded 14 pairings. Within each

pairing, we created two pseudo-participants, one by taking all the

data from the pairing using Jest, and another by taking all the

data from the pairing using NaNofuzz. These pseudo-participants

naturally partition into two groups, one exclusively using each

treatment. We then performed a two-tailed Fisher’s exact test on

the categorical data. There are a total of seven bugs per participant

for this measure, so for this measure we first allocated 7 · 14 = 98

possible tests, and then within the two groups (Jest and NaNofuzz),

counted up the number of bugs actually elicited by participants

through a test case. For each task and treatment, we performed

an ANOVA using the presence of the intervention as a factor and

analyzed the effect of other independent variables: years of pro-

fessional experience, experience with TypeScript, experience with

Jest, and experience with VS Code. For this measure, task six has

twice as many bugs as tasks 1-5, so we divided its raw score by 2

so that scores across tasks have the same range.

(2) Bug description accuracy. This analysis is the same as (1),

except we used categories corresponding to the recorded accuracy

values of −1, 0, 1, 2, and 3. We counted up the number of accuracy

scores in each category for the two groups, as shown in Table 4.

(3) Engineer confidence. This analysis is the same as (1), except

that we used categories corresponding to the possible confidence

scores 1–5, as shown in Table 4, and we did not need to normalize

the range of task 6.

(4) Task time. This analysis is the same as (1), except that we

used a two-tailed paired C-test due to this measure containing

continuous time data rather than categorical data. See Table 5, and

we did not need to normalize the range of task 6.

(5) Tool usability. We counted the number of participants who

gave a higher System Usability Scale [9] score for NaNofuzz vs. Jest

1119

NaNofuzz: A Usable Tool for Automatic Test Generation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

and divided it by the number of participants. We calculated the

mean and standard deviation of the SUS scores for each treatment.

(6) Task realism. We counted the number of participants who re-

sponded in the post-survey that the tasks were realistic (vs. neutral,

unrealistic) and divided the count by the number of participants.

(7) Tool comparison. We analyzed free-form post-survey data

qualitatively using the inductive thematic analysis procedure de-

scribed by Braun and Clarke [8], which calls attention to Frith and

Gleeson [25] as a “particularly good example of an inductive the-

matic analysis.” We therefore used Frith and Gleeson as a model for

our data analysis. Braun and Clarke [8] describes six phases and

emphasizes: (i) the phases are guidelines, not rules; (ii) thematic

analysis is “not linear” and movement among phases is expected;

and (iii) the process should not be rushed. Going beyond the rec-

ommendations of Braun and Clarke [8] and Frith and Gleeson [25],

the third author established replicability of the second author’s

result by re-coding the data for five random participants using the

second author’s codes. This resulted in a substantial [36] level of

inter-rater reliability (̂ = 0.6962).

6 RESULTS

Belowwe report the results of the data analyses described in Section

5.5. Table 3 summarizes measures 1–4 of Figure 3. Figure 5 plots

results for measures 1–5. Table 4 shows the two-tailed Fisher’s

exact tests for measures 1–3. Table 5 shows the paired C-test for

measure 4.

(1) Count of Bugs Elicited. Table 3 shows that participants us-

ing NaNofuzz, on average, detected more bugs (92%) than when

using Jest (80%). The two-tailed Fisher’s exact test shown in Table 4

(Measure 1) indicates the differences in this measure are statistically

significant (? < 0.05). The ANOVA raises no statistically-significant

alternative hypotheses.

(2) Bug description accuracy. Table 3 shows that participants us-

ingNaNofuzz, on average, described bugsmore accurately (1.57/2.00)

than when using Jest (1.18/2.00). The two-tailed Fisher’s exact test

shown in Table 4 (Measure 2) indicates the differences in this mea-

sure are statistically significant (? < 0.007). The ANOVA indicates

that VS Code experience was positively correlated with task time

(? < 0.05) on task 2.

(3) Engineer confidence. Table 3 and Figure 5 show that partici-

pants using NaNofuzz, on average, reported higher confidence on

the Likert scale (3.70/5.00) than when using Jest (3.08/5.00). The

two-tailed Fisher’s exact test shown in Table 4 (Measure 3) indicates

the measured differences are statistically significant (? < 0.03). The

ANOVA raises no statistically-significant alternative hypotheses.

(4) Task time. Out of 168 tasks (28 participants · 6 tasks per partic-

ipant), 13 Jest tasks (15%) and 2 NaNofuzz tasks (2%) were stopped

due to running out of time. Table 3 and Figure 5 show that par-

ticipants usually completed tasks more quickly with NaNofuzz

than with Jest. The two-tailed paired C-test shown in Table 5 in-

dicates the differences in this measure are statistically significant

(? < 0.0001). The ANOVA indicates that VS Code experience was

positively correlated with task time (? < 0.007) on task 4.

(5) Tool usability. Figure 5 shows that 96% (27/28) of participants

rated NaNofuzz (mean=87.86, SD=11.05) higher on the System Us-

ability Scale [9] than Jest (mean=75.98, SD=14.47).

(6) Task realism. 86% (24/28) of participants indicated the tasks in

this study were realistic.

(7) Tool comparison. Our inductive thematic analysis identified

seven repeated themes in participants’ qualitative statements about

Jest and NaNofuzz. The themes are:

T1: Automation can reduce human cognitive effort required for

creating test cases.

T2: Automation can reduce manual labor for creating tests.

T3: Flexibility is valuable—when I need it.

T4: I need to specify what correctness means.

T5: Building a test suite can require iteration and exploration.

T6: Understanding many test outputs helps me understand the

program behavior and be more confident.

T7: Intuitive tool design can reduce barriers.

We discuss the implications of these themes in the next section.

7 DISCUSSION

Our experiment investigated the three research questions intro-

duced in Section 5—RQ1, RQ2, and RQ3. We now discuss how the

answers to these questions are suggested by our results.

RQ1. Relative to standard practice, to what extent may NaNo-

fuzz affect the number of bugs an engineer accurately identi-

fies? NaNoFuzz improved the accuracy of bug identification. Table

3 shows that participants on average found 15% more bugs (Mea-

sure 1) and described bugs 30% more accurately (Measure 2) when

using NaNofuzz than when using Jest.

However, task 6’s large input domain made it less likely for

NaNofuzz to randomly generate inputs that elicited task 6’s two

bugs. Of the participants who used NaNofuzz on task 6, 50% (7/14)

elicited both bugs in the task, 21% (3/14) elicited one bug, and 29%

(4/14) elicited no bugs at all. A successful strategy some partici-

pants adopted was narrowing NaNofuzz’ input ranges to generate

smaller matrices that were more likely to elicit the bugs. Still, three

participants (P33, P43, P44) ran NaNofuzz multiple times, did not

observe obvious bugs, and incorrectly concluded that no bugs were

present. Finding unlikely buggy inputs is a common problem with

fuzzers, and incorporating additional input generation guidance

(e.g., code coverage) into NaNofuzz may support higher accuracy

in these situations. Displaying or visualizing in the user interface

how much of the input domain has been explored by NaNofuzz

may help engineers better decide when to stop looking for bugs.

RQ2. Relative to standard practice, to what extent may NaNo-

fuzz affect the engineer’s confidence in the test activity?

NaNofuzz improved engineers confidence. Table 3 shows that par-

ticipants were on average 20% more confident (Measure 3) when

using NaNofuzz than when using Jest.

The higher confidence that NaNofuzz instills could negatively

affect accuracy in some cases. For instance, P14 quickly elicited the

bug in task 1 using NaNofuzz and self-rated a high confidence level

but then described the bug incompletely. This pattern repeats for

P34 task 2 and P31 task 3. One solution may be for NaNofuzz to

1120

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ma�hew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua Sunshine

Table 3: Quantitative Task Results Summary for Measures 1-4 from Table 1 (= = 28)

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 All Tasks

Tool Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Measure 1: Bugs elicited (1.00=all bugs found); higher is better

Jest 0.93 0.27 1.00 0.00 1.00 0.00 1.00 0.00 0.36 0.50 0.50 0.39 0.80 0.38

NaNofuzz 1.00 0.00 0.93 0.27 1.00 0.00 1.00 0.00 1.00 0.00 0.61 0.45 0.92 0.25

Measure 2: Bug description accuracy (2.00=all bugs described accurately); higher is better

Jest 1.29 0.99 1.71 0.47 1.71 0.61 1.64 0.63 0.21 0.43 0.50 0.44 1.18 0.43

NaNofuzz 1.86 0.36 1.93 0.27 1.93 0.27 1.93 0.27 1.21 0.80 0.54 0.54 1.57 0.69

Measure 3: Engineer confidence (Likert Scale); higher is better

Jest 3.14 1.35 3.43 1.22 3.29 0.99 4.36 0.74 2.29 1.07 2.00 1.04 3.08 1.31

NaNofuzz 4.21 0.70 4.07 0.83 4.14 0.66 4.36 0.84 3.07 1.14 2.36 1.15 3.70 1.15

Measure 4: Time of test suite creation (elapsed seconds); lower is better

Jest 585 224 526 199 622 214 297 113 585 255 628 200 540 230

NaNofuzz 284 139 421 150 318 118 233 77 402 199 622 222 380 199

Bold = Superior mean score

Table 4: Two-tailed Fisher’s Exact Test for Measures 1-3 from Table 1

Measure 1 Jest NaNo Σ

bug elicited 74 86 160

bug not elicited 24 12 36

Σ 98 98 196

Measure 2 Jest NaNo Σ

accuracy = −1 1 1 2

accuracy = 0 20 6 26

accuracy = 1 19 15 34

accuracy = 2 44 61 105

accuracy = 3 0 1 1

Σ 84 84 168

Measure 3 Jest NaNo Σ

confidence = 1 13 6 19

confidence = 2 17 7 24

confidence = 3 16 14 30

confidence = 4 26 36 62

confidence = 5 12 21 33

Σ 84 84 168

Table 5: Two-tailed Paired C-test for Measure 4 from Table 1

Measure 4 Jest NaNo

P12 / P15 time 59m 52s 42m 38s

P14 / P16 time 55m 32s 35m 26s

P18 / P19 time 61m 46s 47m 49s

P20 / P21 time 49m 23s 28m 58s

P22 / P24 time 42m 13s 33m 30s

P23 / P33 time 58m 37s 42m 39s

P25 / P27 time 58m 09s 43m 20s

P26 / P44 time 61m 57s 29m 44s

P30 / P45 time 48m 25s 38m 15s

P31 / P46 time 48m 44s 32m 45s

P32 / P34 time 46m 21s 42m 53s

P35 / P36 time 42m 40s 28m 52s

P37 / P47 time 59m 58s 46m 12s

P42 / P43 time 66m 53s 38m 42s

mean time 54m 19s 37m 59s

look for additional, adjacent examples of a likely bug once one is

found—and then to summarize these findings for the engineer.

RQ3. Relative to standard practice, to what extent may NaNo-

fuzz affect the engineer’s time on the testing task? NaNofuzz

sped up testing tasks. Table 6 shows participants on average com-

pleted tasks 30% faster with NaNofuzz than with Jest.

Why did NaNofuzz show positive results? When did participants

encounter problems using NaNofuzz? Our participants compared

both treatments in the post-survey, and we structure the remainder

of this section using the seven themes presented in Section 6 and

then we discuss some our own thoughts.

T1: Automation can reduce human cognitive effort required

for creating test cases. The process of testing involves a number

of tasks that are cognitively difficult: to create a test case in Jest, the

engineer must think of inputs to test, and then determine what the

appropriate output might be. By automatically generating inputs

and providing a categorized list of test results for the engineer

to choose from, NaNofuzz may benefit from the advantages of

recognition over recall [44] to improve task time (RQ3).

“[NaNofuzz] is really useful for surfacing edge cases without me

needing to think of them.” (P45.Q15)

1121

NaNofuzz: A Usable Tool for Automatic Test Generation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

����������������� ���������
�� �����
��
����	�
���
�� �����
������� ������
������

���������������� ��

�
�
�
��
�
��
�
��
�
�

�
�
�
��
�
��
��
�
��
�

��
�
�
�
�

�
�

	
�

�
�
�

�
�
��
�
�
�
��
��
�
��
�
��
��
�

��
��

�
�

�
��
�
�
�

�
��
��
��
�
�
��
��
�

��
��

�
�
��
�
�
��
�

�
��
��
�
��
�

��
��
�
�
��

�

�

�

�

� �

�

�

��

��

��

��

��

��

��

��

��

��
��

��

��

���

Figure 5: Violin plots showing the distribution of results by treatment for Measures 1-5. Y-axis for Measures 1-4 shows the sum

of six tasks for paired participants. Y-axis for Measure 5 is the SUS [9] score range. The mean is indicated by a black dot. Grey

dots indicate observations. Wider areas of the plot indicate a larger number of observations.

“[With Jest] if I didn’t know what was wrong with the program I

had to sit and stare at the source code or maybe try a few random

guess inputs to get unstuck.” (P25.Q11)

T2: Automation can reduce manual labor for creating tests.

Manual test generation tools such as Jest often require significant

manual labor to type up each test case, including repetitive boil-

erplate testing code that can result in a low signal-to-noise ratio.

For example, Figure 4 shows a ten line Jest test case, but only half

the lines contain any meaningful information for testing. While

these burdens might seem small, participants noticed this difference,

which may contribute to improved task time (RQ3).

“[Jest] can be most cumbersome to use when there are a lot of

similar edge cases that need to be tested, providing those edge

cases can take a lot of effort to set up vs [NaNofuzz] making them

for you.” (P25.Q16)

“[NaNofuzz] helped me enumerate a large set of cases quickly. It

would be useful in scenarios where state space explosion is relevant

and the behavior of the program is complex and unpredictable.”

(P34.Q11)

T3: Flexibility is valuable—when I need it. No tool is always

best. Some participants said they would use both tools when testing.

“Would use both in combination” (P22.Q11.3)

“I like [NaNofuzz] more, but still think that both are better situa-

tionally.” (P30.Q11)

T4: I need to specify what correctness means. NaNofuzz in the

form we evaluated does not allow the engineer to specify an explicit

oracle such that the PUT’s correctness relative to a specification

may be evaluated. Some participants noticed this limitation and

suggested it be addressed in future versions of NaNofuzz.

“The option to enforce a ground truth value helps to check both

the undefined, NaN, etc errors as well as logic errors.” (P35.Q11)

“Jest makes way more sense to test exact semantics one cares

about.” (P14.Q15)

T5: Building a test suite can require iteration and exploration.

Traditional tools like Jest that require significant manual effort to

operate can make it difficult to explore a PUT’s behavior during

testing, especially with a new or unfamiliar program. NaNofuzz’

automation supports exploration of the relationship among a PUT’s

inputs and outputs, which may contribute to NaNofuzz’ improved

performance on bugs accurately identified (RQ1).

“[NaNofuzz] was useful in dynamically verifyingmy assumptions

and exploring options I wasn’t aware of” (P22.Q11.2)

“[W]hen I wanted to test a wide range of values or wanted to do

some quick overview [NaNofuzz] was more useful” (P21.Q13.2)

T6: Understanding many test outputs helps me understand

the program behavior and be more confident. Simply having

more test results available made many participants feel more confi-

dent in their testing, either because they better-understood the func-

tion’s behavior or because the higher number of test cases was more

likely to find unexpected errors. These aspects may contribute to

NaNofuzz’ improved performance on engineer confidence (RQ2).

“I was not certain I had generated enough inputs manually using

Jest.” (P16.Q11)

1122

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ma�hew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua Sunshine

“[NaNofuzz gave me] confidence that I had exercised lots of

possible inputs for the functions under test. With Jest I felt like I

was fishing around trying to find degenerate cases.” (P26.Q11)

T7: Intuitive tool design can reduce barriers.We saw in Section

6 that participants rated NaNofuzz as more usable on the System

Usability Scale, and the free-form feedback provides insight into

some reasons that NaNofuzz might be considered more usable. For

instance, NaNofuzz outputs have a higher signal-to-noise ratio

than Jest, and NaNofuzz only requires minimal information to test

while Jest expects engineers to write testing code, much of which

is boilerplate.

“[NaNofuzz] had a really simple UI while Jest displayed a lot of

information that wasn’t necessary for me to understand how to go

about fixing the output or figuring out what inputs were wrong.”

(P08.Q13)

“It was easier to click [NaNofuzz’] test button and then just change

the input parameters.” (P20.Q15)

8 THREATS TO VALIDITY OF THE STUDY

This study has a number of limitations that might be addressed in

future studies.

Internal Validity. To ensure that the study duration fit within a

length of time that might be acceptable to professional engineers,

we limited the maximum time for each task to fifteen minutes.

We found that this limit stopped participants in 15 tasks (2 with

NaNofuzz, 13 with Jest), or 9% of the total tasks encountered. Of the

stopped Jest tasks, 4 received a perfect score, so it is not reasonable

to expect that the time limit reduced these scores. Given this limit

affected Jest tasks more often than NaNofuzz tasks, it is possible

that accuracy for 9 Jest tasks might be higher had no time limit

been imposed. Despite using an unambiguous rubric, it is possible

that human error reduced the reliability of RQ1’s scoring. To ad-

dress this risk, the third author randomly sampled four sessions

and independently scored them by re-watching the recorded ses-

sion and agreed with the original scoring. While our study design

randomized treatment sequence, the individual task programs were

presented in a fixed order, which did not control for fatigue effects.

As our study design required participants to use both tools, it is pos-

sible that effects from this combination of tools are not controlled.

For instance, engineers may have been more confident on Jest tasks

if they exclusively used Jest without seeing NaNofuzz.

External Validity. While we adopted Ko et al.’s [34] recommenda-

tion to use “found” tasks to improve task realism, it is possible that

the tasks we selected from GitHub, Rosetta Code, and Stack Over-

flow are neither realistic nor representative. During the post-survey,

we asked participants to what extent the tasks they encountered

were realistic, and 86% (24/28) indicated the study tasks were simi-

lar to tasks they might encounter while programming outside the

study. Our sample of professional software engineers may be dis-

similar to the overall population of software engineers in important

ways that are not quantified. Due to procedural difficulties with se-

curing approval to recruit participants outside of the United States

and Canada, our sample does not include software engineers from

other important geographies. The NaNofuzz prototype used in this

study possesses capability necessary to evaluate the hypothesis but

lacks some important features that we discuss in Section 4. Tools

with more functionality may be harder to use [41], and NaNofuzz’

present simplicity may provide a different effect than that of a more-

comprehensive tool. The bugs in our tasks were elicited using the

same implicit oracle, which is not the case with many testing tasks.

Due to this limitation, we propose in Section 10 human studies of

gradual oracle specification using a future and more feature-rich

version of NaNofuzz. During the participant sessions, we did not

model some aspects of industrial software engineering such as

interruptions, since that might introduce variance that would be

difficult to control and that may obscure the effect we intended to

measure with a limited number of participants.

Construct Validity. Quality (RQ1) investigates the number of

bugs an engineer accurately identifies while generating the test

suite, and is measured in two parts. RQ1.1 measures how many

known bugs the test suite elicits, which is an important quality

component: test suites that find actual bugs may be considered

higher quality. RQ1.2 measures the quality of the testing activity

by assessing the extent to which an engineer can accurately de-

scribe the bugs elicited. Other measures of quality exist that we did

not assess, such as code coverage, test suite size, and mutants killed.

However, it was not feasible to test all measures of quality in study

sessions of limited duration. Satisfaction (RQ2) investigates the

participant’s confidence in the testing activity. Sadowski and Zim-

mermann [58] explain that a software engineer’s “satisfaction may

be impacted by the real or perceived effectiveness of their personal

work.” We measure self-reported confidence as a proxy variable for

satisfaction on each given task, but it is not clear to what extent

an engineer’s confidence may relate to overall satisfaction with

the testing activity. Task time (RQ3) investigates how quickly a

software engineer may generate a test suite. This was measured as

time elapsed from the beginning to the end of the task.

9 RELATED WORK

Anand et al. [3] stated that “test case generation is among the most

labour-intensive tasks in software testing.” Yet, test suites are often

created manually [4, 21, 24, 35] despite decades of prior work to

automate aspects of test suite generation.

The Randoop [48] and IntelliTest [39] fuzzers are similar to

NaNofuzz in that they use an implicit oracle and generate persistent

test cases for a test suite. Like NaNofuzz, IntelliTest is integrated

into an IDE. NaNofuzz differs by prioritizing speed and ease of use

over code coverage; further, NaNofuzz was evaluated with humans

in a randomized controlled trial.

Mutation testing originated in the 1970s [10, 18, 19, 32, 46]. De-

Millo and Offutt [20] described adding mutation testing to the

Mothra and Godzilla testing systems and reported promising lab

results. Subsequent improvements were reported (e.g., [31, 50]);

yet, mutation testing often uses the PUT as its oracle, so the tests

these tools generate neither detect bugs that presently exist nor

assert correctness. NaNofuzz differs from mutation testing tools by

not mutating the PUT and by using an implicit oracle that detects

common types of bugs. Like mutation testing tools, NaNofuzz is

unable to evaluate a PUT’s correctness relative to a specification.

Ahlgren et al. [1] and Bornholt et al. [7] provided evidence that

metamorphic test generation tools continue to find important use

1123

NaNofuzz: A Usable Tool for Automatic Test Generation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

cases, particularly in problems where an oracle may be unknowable

or complex. Segura et al. [59] surveyed the metamorphic testing

literature, but excludes related work on property-based testing

(e.g., QuickCheck [11] and its progeny). However, many engineers

find such testing tools difficult to use, and an important theme

of Bornholt et al. [7] was that removing usability barriers was

important for engineer adoption. Goldstein et al. [27] provided

further evidence that practitioners find that property-based testing

tools have significant usability barriers, which may be limiting the

application of metamorphic testing tools to an artificially-small set

of use cases. NaNofuzz differs from these tools in that it uses an

implicit oracle and does not currently allow an engineer to assert

additional relationships between inputs and outputs.

Rothermel et al. [54, 55, 56] performed foundational work in

testing spreadsheets and evaluated “What You See Is What You

Test” (WYSIWYT), a usable testing interface for end-users that did

not require writing code. Fisher et al. [22, 23] expanded this work by

creating “Help Me Test” (HMT), an ATUG tool for spreadsheets that

used random and search-based techniques. Similar to NaNofuzz,

these tools display tests and results as elements within a graphical

user interface, but do so within the context of spreadsheets and not

within an IDE.

Fraser et al. [24] evaluated EvoSuite, a state-of-the-art search-

based ATUG tool, with human software engineers and reported that

human software engineers found fewer bugs with EvoSuite, despite

the tool generating test suites that have higher code coverage. Like

mutation testing tools, EvoSuite uses the PUT as the oracle, so its

tests neither detect current bugs nor assert correctness. The study

used qualitative data to suggest that poor readability of test cases

represented as code may be partially at fault for its negative result.

This finding gave focus to recent research that aimed to improve test

case readability (e.g., [28, 42, 49, 57, 60]). Unlike EvoSuite, NaNofuzz

detects bugs in current programs and has shown positive results

relative to manual test generation in a randomized human trial with

professional software engineers.

Ng et al. [43] observed that one of the top barriers reported

for automatic testing tools is their difficulty of use. Li et al. [37]

called for improved usability of random testing tools. Prado and

Vincenzi [51] and Arcuri [4] observed that ATUG tools are relatively

unused in industry and that tool designers often prioritize technical

or secondary measures over the an engineer’s productivity. Rojas

et al. [52] observed users and found the need for improved EvoSuite

usability and for it to be integrated into the IDE. In a recent industry

blog post [61], James Sowers questioned many interaction aspects

of current testing tools such as Jest. We designed NaNofuzz in

reaction to the findings of the prior work.

10 IMPLICATIONS AND FUTUREWORK

This study’s findings imply that empirical software engineering

researchers may achieve more impactful results by prioritizing

usability aspects such as velocity and satisfaction in addition to test

suite quality when designing or evaluating ATUG tools.

This study provides important evidence that fuzzing can provide

productivity benefits to software engineers, even with a simple

stochastic opaque-box algorithm such as the one used by NaNofuzz.

More sophisticated fuzzers may provide further benefits if provided

to engineers in a usable way within a development environment.

Reducing the number of tests that need to be created manually

might also allow engineers to re-direct efforts towards testing soft-

ware more rigorously than may be practical today. Additionally,

end-user developers are often ignored by ATUG tool designers, but

these developers represent a large user base that is particularly

sensitive to the benefit received (e.g., bugs found relative to time

invested) [33]. Due to this aspect, usable ATUG tools may also have

a great impact on the quality of end-user developed software.

We have released NaNofuzz to the Visual Studio Code Market-

place [14] and plan to use it in real-world situations outside our

study. As these situations may require testing with explicit oracles,

we plan to investigate how NaNofuzz might adopt aspects of test-

ing tools that allow specifying an explicit oracle. This extension

of NaNofuzz was also suggested by participants (Section 6, T4).

Usability might vary with additional feature complexity [41], and

it is important to explore how additional complexity may affect

engineer productivity [58] when building a test suite while simul-

taneously refining an explicit oracle. Additional formative human

studies on engineers using metamorphic testing tools may pro-

vide insights into the barriers these engineers encounter and help

researchers identify human-centered solutions to these barriers.

Future versions of NaNofuzz may also support other IDEs and other

languages beyond Visual Studio Code and TypeScript.

11 CONCLUSIONS

This paper presents NaNofuzz, a usable automatic test generation

tool that runs within an engineer’s IDE and offers a simple set of

interactions for generating a test suite. NaNofuzz provides automa-

tion support for finding edge cases, generating test cases for a test

suite, and categorizing test results. We evaluated NaNofuzz in a

randomized controlled human trial with 28 professional software

engineers using Jest as the control treatment. Participants using

NaNofuzz on average identified bugs more accurately (? < .05,

by 30%), were more confident in their tests (? < .03, by 20%), and

finished their tasks more quickly (? < .007, by 30%). Given the esti-

mated $47 billion USD annual cost of testing in the United States,

these findings suggest that prioritizing testing tool usability may

lead to significant productivity gains for software engineers, as well

as allow for more-rigorous software testing. We hope that this study

motivates further research into usable test suite generation tools

that help engineers efficiently and confidently generate effective

test suites, along with appropriate evaluations of their success.

12 DATA AVAILABILITY

The study data, analysis, tasks, participant demographics, and pro-

tocol are submitted with this paper as supplementary material [17]

and via our study repository [16]. NaNofuzz is MIT-licensed and

available via GitHub [15] and the VS Code Marketplace [14].

ACKNOWLEDGMENTS

This work was supported in part by a CyLab seed funding award

and by NSF grants 2150217 and 1910264. Any opinions, findings, or

conclusions expressed in this material are those of the authors and

do not necessarily reflect those of any of the sponsors.

1124

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Ma�hew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua Sunshine

REFERENCES
[1] John Ahlgren, Maria Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna Dvortsova,

Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik Meijer,
Silvia Sapora, and Justin Spahr-Summers. 2021. Testing Web Enabled Simula-
tion at Scale Using Metamorphic Testing. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
140–149. https://doi.org/10.1109/ICSE-SEIP52600.2021.00023

[2] Bilal Amir and Paul Ralph. 2018. There is no random sampling in software engi-
neering research. In Proceedings of the 40th International Conference on Software
Engineering: companion proceeedings. 344–345. https://doi.org/10.1145/3183440.
3195001

[3] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Phil McMinn, Antonia
Bertolino, J. Jenny Li, and Hong Zhu. 2013. An orchestrated survey of methodolo-
gies for automated software test case generation. Journal of Systems and Software
86, 8 (2013), 1978–2001. https://doi.org/10.1016/j.jss.2013.02.061

[4] Andrea Arcuri. 2018. An experience report on applying software testing academic
results in industry: we need usable automated test generation. Empirical Software
Engineering 23, 4 (2018), 1959–1981. https://doi.org/10.1007/s10664-017-9570-9

[5] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research:
a critical review and guidelines. Empirical Software Engineering 27, 4 (April 2022),
94. https://doi.org/10.1007/s10664-021-10072-8

[6] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven
Amann, and Andy Zaidman. 2017. Developer testing in the ide: Patterns, beliefs,
and behavior. IEEE Transactions on Software Engineering 45, 3 (2017), 261–284.
https://doi.org/10.1109/TSE.2017.2776152

[7] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard
Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob
Van Geffen, and Andrew Warfield. 2021. Using Lightweight Formal Methods
to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP ’21). Association for Computing Machinery, New York, NY, USA, 836–850.
https://doi.org/10.1145/3477132.3483540

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa

[9] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation
in industry 189, 194 (1996), 4–7. https://doi.org/10.1201/9781498710411

[10] Timothy A Budd, Richard J Lipton, Richard DeMillo, and Frederick Sayward. 1978.
The design of a prototype mutation system for program testing. In Managing
Requirements Knowledge, International Workshop on. IEEE Computer Society,
623–623. https://doi.org/10.1109/AFIPS.1978.195

[11] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proceedings of the fifth ACM SIGPLAN
international conference on Functional programming. 268–279. https://doi.org/10.
1145/351240.351266

[12] Anastasia Danilova. 2022. How to Conduct Security Studies with Software De-
velopers. Ph. D. Dissertation. Universitäts-und Landesbibliothek Bonn. https:
//hdl.handle.net/20.500.11811/10063

[13] Matthew C. Davis, Emad Aghayi, Thomas D. Latoza, Xiaoyin Wang, Brad A.
Myers, and Joshua Sunshine. 2023. What’s (Not) Working in Programmer User
Studies? ACM Trans. Softw. Eng. Methodol. 32, 5, Article 120 (jul 2023), 32 pages.
https://doi.org/10.1145/3587157

[14] Matthew C Davis, Sangheon Choi, and Sam Estep. 2022. NaNofuzz - Visual Studio
Marketplace. https://marketplace.visualstudio.com/items?itemName=penrose.
nanofuzz. [Online; accessed 2022-11-20].

[15] Matthew C Davis, Sangheon Choi, and Sam Estep. 2022. NaNofuzz: a fast and
easy-to-use automatic test suite generator for Typescript that runs inside VS
Code. https://github.com/nanofuzz/nanofuzz. [Online; accessed 2022-11-20].

[16] Matthew C Davis, Sangheon Choi, and Sam Estep. 2022. nanofuzz-study. https:
//github.com/nanofuzz/nanofuzz-study.

[17] Matthew C Davis, Sangheon Choi, and Sam Estep. 2023. Reproduction Package
for Article “NaNofuzz: A Usable Test Suite Generation Tool”. https://doi.org/10.
1145/3580413

[18] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (April 1978), 34–41. https:
//doi.org/10.1109/C-M.1978.218136 Conference Name: Computer.

[19] Richard A DeMillo. 1989. Completely validated software: Test adequacy and pro-
gram mutation (panel session). In Proceedings of the 11th International Conference
on Software engineering. 355–356. https://doi.org/10.1145/74587.74634

[20] Richard A DeMillo and A Jefferson Offutt. 1993. Experimental results from an
automatic test case generator. ACM Transactions on Software Engineering and
Methodology (TOSEM) 2, 2 (1993), 109–127. https://doi.org/10.1145/151257.151258

[21] Eduard Enoiu and Robert Feldt. 2021. Towards Human-Like Automated Test
Generation: Perspectives from Cognition and Problem Solving. In 2021 IEEE/ACM
13th International Workshop on Cooperative and Human Aspects of Software Engi-
neering (CHASE). 123–124. https://doi.org/10.1109/CHASE52884.2021.00026

[22] Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis R Cook, and Margaret M
Burnett. 2002. Automated test case generation for spreadsheets. In Proceedings of
the 24th International Conference on Software Engineering (ICSE). IEEE, 141–151.
https://doi.org/10.1145/581339.581359

[23] Marc Fisher, Gregg Rothermel, Darren Brown, Mingming Cao, Curtis Cook,
and Margaret Burnett. 2006. Integrating automated test generation into the
WYSIWYT spreadsheet testing methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM) 15, 2 (2006), 150–194. https://doi.org/10.
1145/1131421.1131423

[24] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2015.
Does automated unit test generation really help software testers? a controlled
empirical study. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24, 4 (2015), 1–49. https://doi.org/10.1145/2699688

[25] Hannah Frith and Kate Gleeson. 2004. Clothing and embodiment: Men managing
body image and appearance. Psychology of men & masculinity 5, 1 (2004), 40.
https://doi.org/10.1037/1524-9220.5.1.40

[26] GitHub. 2022. GitHub Codespaces. https://github.com/features/codespaces.
[Online; accessed 2022-11-21].

[27] Harrison Goldstein, JosephWCutler, Adam Stein, Benjamin C Pierce, and Andrew
Head. 2022. Some Problems with Properties. In Proc. Workshop on the Human
Aspects of Types and Reasoning Assistants (HATRA).

[28] Giovanni Grano, Simone Scalabrino, Harald C Gall, and Rocco Oliveto. 2018. An
empirical investigation on the readability of manual and generated test cases. In
2018 IEEE/ACM 26th International Conference on Program Comprehension (ICPC).
IEEE, 348–3483. https://doi.org/10.1145/3196321.3196363

[29] William E Howden. 1978. Theoretical and empirical studies of program testing.
IEEE Transactions on Software Engineering 4 (1978), 293–298. https://doi.org/10.
1109/TSE.1978.231514

[30] Pankaj Jalote. 2008. A concise introduction to software engineering. Springer
Science & Business Media. https://doi.org/10.1007/978-1-84800-302-6

[31] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.
https://doi.org/10.1109/TSE.2010.62

[32] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (Sept. 2011),
649–678. https://doi.org/10.1109/TSE.2010.62

[33] Amy J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Margaret Burnett,
Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry Lieberman, Brad A Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and Susan Wiedenbeck. 2011.
The State of the Art in End-User Software Engineering. ACM Comput. Surv. 43,
3, Article 21 (apr 2011), 44 pages. https://doi.org/10.1145/1922649.1922658

[34] Amy J Ko, Thomas D LaToza, and Margaret M Burnett. 2015. A practical guide to
controlled experiments of software engineering tools with human participants.
Empirical Software Engineering 20, 1 (2015), 110–141. https://doi.org/10.1007/
s10664-013-9279-3

[35] Jeshua S Kracht, Jacob Z Petrovic, and Kristen RWalcott-Justice. 2014. Empirically
evaluating the quality of automatically generated and manually written test
suites. In 2014 14th International Conference on Quality Software. IEEE, 256–265.
https://doi.org/10.1109/QSIC.2014.33

[36] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer
Agreement for Categorical Data. Biometrics 33, 1 (1977), 159–174. https:
//doi.org/10.2307/2529310 Publisher: [Wiley, International Biometric Society].

[37] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen,
Chenyang Lyu, ChunmingWu, RaheemBeyah, Peng Cheng, et al. 2021. UNIFUZZ:
A Holistic and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers.. In
USENIX Security Symposium. USENIX Association, 2777–2794.

[38] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2021. The Art, Science, and
Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering 47,
11 (2021), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[39] Microsoft. 2023. Overview of Microsoft IntelliTester. https://learn.microsoft.com/
en-us/visualstudio/test/intellitest-manual/. [Online; accessed 2023-01-27].

[40] Barton P Miller, Lars Fredriksen, and Bryan So. 1990. An empirical study of
the reliability of UNIX utilities. Commun. ACM 33, 12 (1990), 32–44. https:
//doi.org/10.1145/96267.96279

[41] Brad A Myers. 1994. Challenges of HCI Design and Implementation. Interactions
1, 1 (jan 1994), 73–83. https://doi.org/10.1145/174800.174808

[42] Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P Robillard.
2022. Generating unit tests for documentation. IEEE Transactions on Software
Engineering 48, 9 (2022), 3268–3279. https://doi.org/10.1109/TSE.2021.3087087

[43] Sebastian P Ng, Tafline Murnane, Karl Reed, D Grant, and Tsong Yueh Chen.
2004. A preliminary survey on software testing practices in Australia. In 2004
Australian Software Engineering Conference. Proceedings. IEEE, 116–125. https:
//doi.org/10.1109/ASWEC.2004.1290464

[44] Jakob Nielsen. 1994. Enhancing the Explanatory Power of Usability Heuristics.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Boston, Massachusetts, USA) (CHI ’94). Association for Computing Machinery,
New York, NY, USA, 152–158. https://doi.org/10.1145/191666.191729

1125

https://doi.org/10.1109/ICSE-SEIP52600.2021.00023
https://doi.org/10.1145/3183440.3195001
https://doi.org/10.1145/3183440.3195001
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/s10664-017-9570-9
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1109/TSE.2017.2776152
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1201/9781498710411
https://doi.org/10.1109/AFIPS.1978.195
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://hdl.handle.net/20.500.11811/10063
https://hdl.handle.net/20.500.11811/10063
https://doi.org/10.1145/3587157
https://marketplace.visualstudio.com/items?itemName=penrose.nanofuzz
https://marketplace.visualstudio.com/items?itemName=penrose.nanofuzz
https://github.com/nanofuzz/nanofuzz
https://github.com/nanofuzz/nanofuzz-study
https://github.com/nanofuzz/nanofuzz-study
https://doi.org/10.1145/3580413
https://doi.org/10.1145/3580413
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1145/74587.74634
https://doi.org/10.1145/151257.151258
https://doi.org/10.1109/CHASE52884.2021.00026
https://doi.org/10.1145/581339.581359
https://doi.org/10.1145/1131421.1131423
https://doi.org/10.1145/1131421.1131423
https://doi.org/10.1145/2699688
https://doi.org/10.1037/1524-9220.5.1.40
https://github.com/features/codespaces
https://doi.org/10.1145/3196321.3196363
https://doi.org/10.1109/TSE.1978.231514
https://doi.org/10.1109/TSE.1978.231514
https://doi.org/10.1007/978-1-84800-302-6
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1109/QSIC.2014.33
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1109/TSE.2019.2946563
https://learn.microsoft.com/en-us/visualstudio/test/intellitest-manual/
https://learn.microsoft.com/en-us/visualstudio/test/intellitest-manual/
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/174800.174808
https://doi.org/10.1109/TSE.2021.3087087
https://doi.org/10.1109/ASWEC.2004.1290464
https://doi.org/10.1109/ASWEC.2004.1290464
https://doi.org/10.1145/191666.191729

NaNofuzz: A Usable Tool for Automatic Test Generation ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[45] Bureau of Labor Statistics. 2022. Occupational Outlook Handbook, Software
Developers, Quality Assurance Analysts, and Testers. https://www.bls.gov/
ooh/computer-and-information-technology/software-developers.htm. [Online;
accessed 2022-10-06].

[46] Jeff Offutt. 2011. A mutation carol: Past, present and future. Information and
Software Technology 53, 10 (Oct. 2011), 1098–1107. https://doi.org/10.1016/j.
infsof.2011.03.007

[47] Gerard O’Regan. 2019. Fundamentals of Software Testing. Springer International
Publishing, 59–78. https://doi.org/10.1007/978-3-030-28494-7_3

[48] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-Directed Random Test Generation. In 29th International Conference
on Software Engineering (ICSE’07). IEEE, Minneapolis, MN, USA, 75–84. https:
//doi.org/10.1109/ICSE.2007.37 ISSN: 0270-5257.

[49] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and
Harald C. Gall. 2016. The Impact of Test Case Summaries on Bug Fixing Per-
formance: An Empirical Investigation. In Proceedings of the 38th International
Conference on Software Engineering (Austin, Texas) (ICSE ’16). Association for
Computing Machinery, New York, NY, USA, 547–558. https://doi.org/10.1145/
2884781.2884847

[50] Alessandro Viola Pizzoleto, Fabiano Cutigi Ferrari, Jeff Offutt, Leo Fernandes, and
Márcio Ribeiro. 2019. A systematic literature review of techniques and metrics to
reduce the cost of mutation testing. Journal of Systems and Software 157 (2019),
110388. https://doi.org/10.1016/j.jss.2019.07.100

[51] Marllos Paiva Prado and Auri Marcelo Rizzo Vincenzi. 2018. Towards cognitive
support for unit testing: A qualitative study with practitioners. Journal of Systems
and Software 141 (2018), 66–84. https://doi.org/10.1016/j.jss.2018.03.052

[52] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2015. Automated Unit
Test Generation during Software Development: A Controlled Experiment and
Think-Aloud Observations. In Proceedings of the 2015 International Symposium on
Software Testing and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for
Computing Machinery, New York, NY, USA, 338–349. https://doi.org/10.1145/
2771783.2771801

[53] Robert Rosenthal and Ralph L Rosnow. 2008. Essentials of behavioral research:
Methods and data analysis.

[54] G. Rothermel, L. Li, and M. Burnett. 1997. Testing strategies for form-based
visual programs. In Proceedings The Eighth International Symposium on Software
Reliability Engineering. 96–107. https://doi.org/10.1109/ISSRE.1997.630851

[55] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. 1998. What you see is what
you test: a methodology for testing form-based visual programs. In Proceedings
of the 20th International Conference on Software Engineering. 198–207. https:
//doi.org/10.1109/ICSE.1998.671118 ISSN: 0270-5257.

[56] Karen J. Rothermel, Curtis R. Cook, Margaret M. Burnett, Justin Schonfeld, T. R. G.
Green, and Gregg Rothermel. 2000. WYSIWYT Testing in the Spreadsheet Para-
digm: An Empirical Evaluation. In Proceedings of the 22nd International Conference
on Software Engineering (Limerick, Ireland) (ICSE ’00). Association for Computing
Machinery, New York, NY, USA, 230–239. https://doi.org/10.1145/337180.337206

[57] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella,
Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mirakhorli. 2021. DeepTC-
Enhancer: Improving the Readability of Automatically Generated Tests. In Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering (Virtual Event, Australia) (ASE ’20). Association for Computing Ma-
chinery, New York, NY, USA, 287–298. https://doi.org/10.1145/3324884.3416622

[58] Caitlin Sadowski and Thomas Zimmermann. 2019. Rethinking productivity in
software engineering. Springer Nature. https://doi.org/10.1007/978-1-4842-4221-6

[59] Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
Survey on Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9
(2016), 805–824. https://doi.org/10.1109/TSE.2016.2532875

[60] Novi Setiani, Ridi Ferdiana, and Rudy Hartanto. 2022. Understandable Automatic
Generated Unit Tests using Semantic and Format Improvement. In 2022 6th
International Conference on Informatics and Computational Sciences (ICICoS). 122–
127. https://doi.org/10.1109/ICICoS56336.2022.9930600

[61] James Somers. 2023. What if writing tests was a joyful experience? https:
//blog.janestreet.com/the-joy-of-expect-tests/

[62] Facebook Open Source. 2022. Jest - Delightful Javascript Testing. https://jestjs.io/.
[Online; accessed 2022-11-08].

[63] Tristan Teufel and contributors. 2022. Jest Runner. https://github.com/firsttris/
vscode-jest-runner. [Online; accessed 2022-11-10].

[64] Priyadarshi Tripathy and Kshirasagar Naik. 2011. Software testing and quality
assurance: theory and practice. John Wiley & Sons. https://doi.org/10.1002/
9780470382844

[65] Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test
Coverage and Adequacy. ACM Comput. Surv. 29, 4 (dec 1997), 366–427. https:
//doi.org/10.1145/267580.267590

Received 2023-02-02; accepted 2023-07-27

1126

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1016/j.infsof.2011.03.007
https://doi.org/10.1007/978-3-030-28494-7_3
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/2884781.2884847
https://doi.org/10.1145/2884781.2884847
https://doi.org/10.1016/j.jss.2019.07.100
https://doi.org/10.1016/j.jss.2018.03.052
https://doi.org/10.1145/2771783.2771801
https://doi.org/10.1145/2771783.2771801
https://doi.org/10.1109/ISSRE.1997.630851
https://doi.org/10.1109/ICSE.1998.671118
https://doi.org/10.1109/ICSE.1998.671118
https://doi.org/10.1145/337180.337206
https://doi.org/10.1145/3324884.3416622
https://doi.org/10.1007/978-1-4842-4221-6
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/ICICoS56336.2022.9930600
https://blog.janestreet.com/the-joy-of-expect-tests/
https://blog.janestreet.com/the-joy-of-expect-tests/
https://jestjs.io/
https://github.com/firsttris/vscode-jest-runner
https://github.com/firsttris/vscode-jest-runner
https://doi.org/10.1002/9780470382844
https://doi.org/10.1002/9780470382844
https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590

	Abstract
	1 Introduction
	2 Definitions
	3 NaNofuzz
	4 Scope and Limitations
	5 Experiment
	5.1 Treatments
	5.2 Tasks
	5.3 Participants
	5.4 Measurements
	5.5 Data Analysis

	6 Results
	7 Discussion
	8 Threats to Validity of the Study
	9 Related Work
	10 Implications and Future Work
	11 Conclusions
	12 Data Availability
	Acknowledgments
	References

