
TerzoN: Human-in-the-Loop Software Testing with a
Composite Oracle
MATTHEW C. DAVIS, Carnegie Mellon University, USA
AMY WEI, University of Michigan, USA
BRAD A. MYERS, Carnegie Mellon University, USA
JOSHUA SUNSHINE, Carnegie Mellon University, USA

5

4

3

2

��������� {
6

8

1

7

Fig. 1. The TerzoN user interface in the Visual Studio Code IDE provides one-click initial test generation for
TypeScript programs. The user may gradually refine the tests in various ways. Key UI elements: (1) Button that
starts TerzoN; (2) TerzoN’s testing window beside the program under test; (3) Customizable input parameters;
(4) Options for categorizing test results; (5) Button that starts testing; (6) Advanced options; (7) Test results
organized to display likely bugs more prominently; (8) Button to add test cases to the persistent test suite.

Software testing is difficult, tedious, and may consume 28%–50% of software engineering labor. Automatic
test generators aim to ease this burden but have important trade-offs. Fuzzers use an implicit oracle that
can detect obviously invalid results, but the oracle problem has no general solution, and an implicit oracle

Authors’ addresses: Matthew C. Davis, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, mcd2@cs.cmu.edu; Amy
Wei, University of Michigan, Ann Arbor, Michigan, USA, weia@umich.edu; Brad A. Myers, Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA, bam@cs.cmu.edu; Joshua Sunshine, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, sunshine@cs.cmu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2994-970X/2025/7-ARTFSE089
https://doi.org/10.1145/3729359

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0003-2366-8436
HTTPS://ORCID.ORG/0009-0005-6046-1815
HTTPS://ORCID.ORG/0000-0002-4769-0219
HTTPS://ORCID.ORG/0000-0002-9672-5297
https://orcid.org/0000-0003-2366-8436
https://orcid.org/0009-0005-6046-1815
https://orcid.org/0009-0005-6046-1815
https://orcid.org/0000-0002-4769-0219
https://orcid.org/0000-0002-9672-5297
https://doi.org/10.1145/3729359

FSE089:2 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

cannot automatically evaluate correctness. Test suite generators like EvoSuite use the program under test
as the oracle and therefore cannot evaluate correctness. Property-based testing tools evaluate correctness,
but users have difficulty coming up with properties to test and understanding whether their properties are
correct. Consequently, practitioners create many test suites manually and often use an example-based oracle
to tediously specify correct input and output examples. To help bridge the gaps among various oracle and tool
types, we present the Composite Oracle, which organizes various oracle types into a hierarchy and renders
a single test result per example execution. To understand the Composite Oracle’s practical properties, we
built TerzoN, a test suite generator that includes a particular instantiation of the Composite Oracle. TerzoN
displays all the test results in an integrated view composed from the results of three types of oracles and finds
some types of test assertion inconsistencies that might otherwise lead to misleading test results. We evaluated
TerzoN in a randomized controlled trial with 14 professional software engineers with a popular industry tool,
fast-check, as the control. Participants using TerzoN elicited 72% more bugs (𝑝 <0.01), accurately described
more than twice the number of bugs (𝑝 <0.01) and tested 16% more quickly (𝑝 <0.05) relative to fast-check.

CCS Concepts: • Software and its engineering → Software testing and debugging; • Human-centered
computing → User studies.

Additional Key Words and Phrases: Empirical software engineering, user study, software testing, human
subjects, experiments, usable testing, automatic test generation, composite oracle

ACM Reference Format:
Matthew C. Davis, AmyWei, Brad A. Myers, and Joshua Sunshine. 2025. TerzoN: Human-in-the-Loop Software
Testing with a Composite Oracle. Proc. ACM Softw. Eng. 2, FSE, Article FSE089 (July 2025), 23 pages. https:
//doi.org/10.1145/3729359

1 INTRODUCTION
Software testing often intends to prevent bugs from affecting users and operations [33, 47]. However,
testing is labor-intensive [2] and may represent 28%–50% of software engineering labor [6, 64].
Many tools aim to ease the burden by automatically generating tests but have important trade-offs.
In testing, an oracle determines whether the output of a program under test (PUT) is cor-

rect. Fuzzers [39] like AFL [67] use an implicit oracle that automatically detects likely invalid
results such as crashes or NaN (Not-a-Number) outputs. But the oracle problem has no general
solution [5]; thus, fuzzers cannot automatically evaluate correctness of the PUT. Automatic Test
sUite Generators (ATUGs) like EvoSuite [23, 24] use the PUT as the oracle and, therefore, also
cannot evaluate a PUT’s correctness. Property-based testing (PBT) tools like Hypothesis [38],
fast-check [19], and Quickcheck [11] use a property-based oracle, which often requires the user
to manually write snippets of code to check the correctness of many inputs and outputs. However,
other researchers say that users find it difficult to come up with properties to test and to under-
stand whether the properties they came up with are correct [7, 26, 27, 30, 66]. Further, automatic
testing tools have usability problems [3, 7, 27, 36, 45, 50, 53, 61] that may impair user adoption, and
many users continue to create test suites manually [3, 20, 24, 35] by tediously selecting example
inputs and outputs. Consequently, an important problem is how to provide effective and efficient
automation support for users generating test cases and test suites that evaluate correctness.

To help bridge these important gaps, we present the Composite Oracle, which allows a user to,
e.g., generate initial test cases using an implicit oracle and then refine test cases by annotating the
correctness of interesting execution examples and/or by writing snippets of code to test properties of
the PUT. The Composite Oracle may also alert the user to inconsistencies among various correctness
assertions, such as property-based and example-based assertions that yield contradictory results.
To understand whether the Composite Oracle might benefit users, we extended our prior tool,

NaNofuzz [14], to build TerzoN, which organizes implicit, example-based, and property-based
oracles into a particular Composite Oracle with a unique user interface (UI) that allows the user

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

https://doi.org/10.1145/3729359
https://doi.org/10.1145/3729359

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:3

to select and see the final and intermediate test results of the Composite Oracle. TerzoN’s unique
UI was refined over many rounds of rapid prototyping and user tests. Finally, we conducted a
randomized controlled human trial [43, 54] with 14 professional software engineers using TerzoN
as the intervention treatment and a popular industry PBT tool, fast-check [17, 19], as the control
treatment. Participants using TerzoN elicited 72% more bugs (𝑝 <0.01), accurately described more
than twice the number of bugs (𝑝 <0.01) and tested 16%more quickly (𝑝 <0.05) relative to fast-check.

Contributions of this paper (C)

(C1) A precise definition and algorithm describing the Composite Oracle (Section 2)
(C2) The open-source TerzoN ATUG, which surfaces a particular instantiation of the Com-
posite Oracle in its unique user interface (Section 3)
(C3) An empirical evaluation that provides evidence that TerzoN’s particular Composite
Oracle and UI may improve users’ ability to efficiently generate effective test cases (Section 4)

This first study of the Composite Oracle provides evidence that TerzoN’s particular Composite
Oracle and UI helped study participants generate bug-finding tests more efficiently and effectively.
Our study design carries the important limitation that apportioning the effect among TerzoN’s
particular Composite Oracle and UI is not possible. Consequently, further studies would be needed
to explore the advantages and limitations of the Composite Oracle in various other contexts.

2 THE COMPOSITE ORACLE
Various types of oracles have trade-offs such that no single type of oracle may be optimal for every
situation. The central insight of this paper is that the strengths and weaknesses of various types of
oracles may complement one another when composed in a thoughtful way. Below we describe some
trade-offs of three types of oracles used in our system and then provide an illustrative example.
An implicit oracle detects outputs such as crashes or NaNs that may indicate likely bugs. As an
implicit oracle only considers the PUT’s output, it cannot evaluate the PUT’s correctness relative
to specific inputs. However, this type of oracle requires minimal effort from a user and can find
actual bugs, as evidenced by the lengthy empirical success record of the fuzzing community [39].
An example-based oracle detects outputs that differ from a specific example input/output pair
previously determined to be correct. Creating a single example test case may be low effort, but the
effort required to identify and specify many examples to test can be tedious in practice.
A property-based oracle detects outputs that violate a specified correctness property for a given
PUT. A property-based oracle is particularly powerful in that it can evaluate correctness for a
diverse set of execution examples. However, identifying the property to test requires distilling the
program’s specific behavior into a generalized property, which in practice can be a difficult task for
users to do correctly even with significant time and effort [26, 27, 66].
Example combination of three oracle types: Imagine a user is generating tests for the
decodeRoman function shown in Figure 1, which is supposed to convert roman numerals as strings
into standard integers. The user may generate an initial set of tests in a few seconds using an implicit
oracle. This initial set of tests may detect some or no bugs. Regardless, the initial set of tests provides
a rich set of execution examples from which the user may recognize interesting examples to anno-
tate for correctness using the example-based oracle. Combining these two oracles changes the task
from one of thinking up interesting tests to one of recognizing interesting tests from among examples.
Like Nielsen’s “recognition over recall” [46], we hypothesize that recognizing a useful test is easier

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:4 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

than thinking one up. Let’s say the user notices that decodeRoman(“VLX”) incorrectly returns 65.
They first might create a standard unit test asserting the expected result. They next might realize
that an important property to test is that decodeRoman(toRoman(n))=n for ∀𝑛 ∈ Z>0. In other
words, if a natural number is first translated to roman numerals and then back, then the input and re-
turn value should be equal. Once the user has identified a property, it may take the user a few tries to
correctly write a code snippet to specify it. Therefore, it is important to compare the property-based
oracle’s results to that of the example-based oracle to find examples where the two oracles disagree,
which may indicate errors in either the property’s specification or the example-based annotation.

Oracle Precedence: Test results of the example- and property-based oracles are naturally more
authoritative than those of the implicit oracle given that they encode aspects of the PUT’s expected
behavior. Consequently, test results from the example- and property-based oracles may be allocated
a higher precedence than those of the implicit oracle such that a passing example-based result may
override a failing implicit result. E.g., a PUT may correctly crash or return NaN for certain inputs.

Judgment Values: Different oracles might render conflicting judgments. In addition to 𝑝𝑎𝑠𝑠 and
𝑓𝑎𝑖𝑙 , a third judgment value, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, represents cases where a judgment cannot be rendered; e.g.,
when contradictory judgments cannot be resolved according to the rules of precedence.

Together, we call the above concepts a Composite Oracle, which we precisely define below:

Definition: Composite Oracle

Let aTest Oracle (𝑂) be a function that evaluates the inputs (𝑖𝑛𝑝𝑢𝑡0..𝑚) and outputs (𝑜𝑢𝑡𝑝𝑢𝑡0..𝑛)
of a PUT execution and produces a Judgment (𝐽) indicating whether the execution is valid. A
judgment may be one of: 𝑓𝑎𝑖𝑙 , 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, or 𝑝𝑎𝑠𝑠 .

𝐽 ∈ Z (1)
𝑓𝑎𝑖𝑙 = Z<0 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 = 0 𝑝𝑎𝑠𝑠 = Z>0 (2)

𝑂
(
{𝑖𝑛𝑝𝑢𝑡1, ..., 𝑖𝑛𝑝𝑢𝑡𝑚}, {𝑜𝑢𝑡𝑝𝑢𝑡1, ..., 𝑜𝑢𝑡𝑝𝑢𝑡𝑛}

)
↦→ 𝐽 (3)

Let a Judgment Hierarchy (𝐽𝐻𝑖=0..𝑘) be a recursive tuple of 𝑘 depth such that the tuple’s first
element is the set of judgments with a higher precedence (𝑖) than those of the second tuple
element’s judgment hierarchy (𝐽𝐻𝑖+1). 𝐽𝐻𝑘 is the empty set, ∅, at the bottom of the hierarchy.

𝐽𝐻𝑘 := ∅ 𝐽𝐻𝑖=0..𝑘−1 :=
{
{𝐽𝑖,1, .., 𝐽𝑖,𝑙 }, 𝐽𝐻𝑖+1

}
(4)

Let a Composite Oracle (𝑂𝐶) be a function that produces a single judgment (𝐽 ′) from a
Judgment Hierarchy (𝐽𝐻) according to the precedence of judgments in the hierarchy.

𝑂𝐶 (𝐽𝐻𝑖) :=

𝑢𝑛𝑘𝑛𝑜𝑤𝑛 if ∃𝑥,𝑦 ∈ {1, ..., 𝑙} | 𝐽𝑖,𝑥 ∈ 𝑝𝑎𝑠𝑠 ∧ 𝐽𝑖,𝑦 ∈ 𝑓𝑎𝑖𝑙

Σ[𝐽𝑖,1, ..., 𝐽𝑖,𝑙] ∃𝑥 ∈ [1, 𝑙] | 𝐽𝑖,𝑥 ≠ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

𝑝𝑎𝑠𝑠 𝐽𝐻𝑖+1 = ∅
𝑂𝐶 (𝐽𝐻𝑖+1) otherwise

 ↦→ 𝐽 ′ (5)

𝑂𝐶 returns 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 to signal disagreement when judgments of the current precedence level
include both 𝑝𝑎𝑠𝑠 and 𝑓𝑎𝑖𝑙 . Excluding 𝑢𝑛𝑘𝑛𝑜𝑤𝑛, if there are 𝑝𝑎𝑠𝑠 xor 𝑓𝑎𝑖𝑙 Judgments, then
return their sum. If we have reached the bottom of the hierarchy (∅), return 𝑝𝑎𝑠𝑠 . Otherwise,
recursively process the next-lower level of the Judgment Hierarchy.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:5

The Composite Oracle renders a single judgment from the hierarchy of oracle judgments for
a given example execution. For example, an implicit, example-based, and property-based ora-
cle may respectively render 𝑝𝑎𝑠𝑠 , 𝑓𝑎𝑖𝑙 , and 𝑓𝑎𝑖𝑙 judgments for the incorrect example execution,
decodeRoman(“VLX")=65. Given a Judgment Hierarchy where the implicit oracle has the lowest
precedence, the Composite Oracle would render a 𝑓𝑎𝑖𝑙 judgment.

3 THE TERZON AUTOMATIC TEST GENERATOR
To explore the Composite Oracle’s properties, we built TerzoN, which surfaces within its UI a
particular instantiation of a Composite Oracle with three different oracle types: implicit, example-
based, and property-based. Other instantiations of the Composite Oracle are possible. We built
TerzoN on top of theNaNofuzz ATUG [14] for a number of reasons. First, representing the Composite
Oracle’s state in NaNofuzz’ graphical UI might be more usable than in the terminal-based interface
provided by many testing tools. Second, NaNofuzz supports TypeScript, which we believe is a
language that justifies more attention from the testing research community given that a recent
IEEE survey [10] reported that TypeScript is a top-5 programming language. Third, Davis et al. [14]
showed that NaNofuzz’ unique UI of tabs and grids helped users efficiently generate bug-finding
test suites using an easy-to-use input generator, implicit oracle, and coherent organization of test
results. In the following subsections, we discuss how TerzoN generates test inputs, categorizes test
outputs using the Composite Oracle, presents test results, and how the user interacts with TerzoN.

3.1 Generating Inputs
Our study focuses on oracles and test validation and not on input generation. Therefore, TerzoN
uses NaNofuzz’ input generator, which heuristically derives an input generator from the PUT’s
formal parameters and types. This generator produces random inputs within a set of ranges or
constraints that the user may modify using the UI shown at (3) of Figure 1.

3.2 Categorizing Outputs
TerzoN’s particular Composite Oracle may evaluate a single execution example multiple times to
obtain judgments from 3 different oracles. Consequently, TerzoN generates an input, calls the PUT,
and then provides both the input and the resulting output to the 3 test oracles that need to render
judgments. A benefit of TerzoN’s design is that users neither need to code multiple input generators
nor code multiple calls to the PUT to obtain its output. Below we describe TerzoN’s particular
Judgment Hierarchy used by 𝑂𝐶 to produce a single 𝐽 ′ from the 3 different oracle judgments.

Definition: TerzoN’s Judgment Hierarchy

TerzoN’s Judgment Hierarchy is a particular instantiation of the Composite Oracle and is
defined as follows: Let 𝐽𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 be the judgment of the implicit oracle, 𝐽𝑒𝑥𝑎𝑚𝑝𝑙𝑒 be the judgment
of the example-based oracle, and 𝐽𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 be the judgment of the property-based oracle,

𝐽𝐻1 :=
{
{𝐽𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡 }, ∅

}
(6)

𝐽𝐻0 :=
{
{𝐽𝑒𝑥𝑎𝑚𝑝𝑙𝑒 , 𝐽𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦}, 𝐽𝐻1

}
(7)

Intuition: TerzoN’s Judgment Hierarchy gives the example-based and property-based oracles
equivalent precedence such that contradictory judgments among these two oracles result in
𝐽 ′ = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛. The implicit oracle has a lower precedence; thus, it is only a factor in 𝐽 ′ when
neither the example-based nor the property-based oracle renders a 𝑝𝑎𝑠𝑠 or 𝑓𝑎𝑖𝑙 judgment.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:6 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

TerzoN includes the particular instantiation of the Composite Oracle described above; however, other
instantiations are possible, and we describe some of these further possibilities in Section 9. Similar
to other property-based testing tools used in industry, TerzoN users manually write snippets of code
that specify the properties they would like to test: TerzoN does not automatically infer properties for
the user. We describe in more detail this aspect of TerzoN and another tool, fast-check, in Section 4.3.

3.3 Presentation of Test Results
TerzoN approaches the presentation of test results differently from many testing tools, which hide
passing test details by default. Our tool additionally departs from the default behavior of PBT tools,
which typically stop testing upon encountering the first failing example. The intent behind hiding
some details or limiting the number of failures displayed may be to avoid overwhelming the user
with too much information and distracting the user from focusing on the failure. However, we are
not aware that these widely-used defaults have an empirical basis, and hiding this information
might reasonably make it harder for users to understand what inputs were tested, what outputs
passed, and what other examples may have failed if testing continued. All of these details may
be important to a user generating tests. For TerzoN, we decided to follow NaNofuzz’ example: by
default, TerzoN shows all test results and continues testing regardless of the number of failures.
However, the user may change TerzoN’s defaults in its Advanced Options panel if desired.

3.4 User Interface
In this section, we refer to the interface elements in Figure 1. Refining TerzoN’s UI required multiple
rounds of rapid prototyping and user tests, including paper prototypes and the “Wizard of Oz” HCI
method [43] in early rounds. Aspects of the Composite Oracle are surfaced in (4) and (7).
(1) TerzoN button. TerzoN decorates exported TypeScript functions displayed in the IDE’s editor
with a button that starts TerzoN in a side window (2).
(2) TerzoN window. The testing window opens “to the side” of the PUT so that the user may
simultaneously see the PUT, the test cases, and the test results.
(3) Input parameters. TerzoN analyzes the function signature to determine its inputs, types, and
default input ranges. The human-in-the-loop user may adjust these ranges if desired. Inputs are
displayed in a TypeScript-like format to minimize the user’s cognitive load.
(4) Oracle selection. The user may use the checkboxes to select whether tests should be classified
using the implicit (heuristic) and/or property-based oracles. The add (+) button creates a new
property validator function where the user may type in code to test a property of the PUT. The list
of property validator functions is displayed when hovering over the “Property validator(s)” label,
and the user may force a refresh of this list by pressing the refresh button. The example-based
(human) oracle is set at the test case level (see Figure 1) and, therefore, is always active.
(5) Test button. When pressed, TerzoN generates test inputs, executes the PUT, and categorizes
results using the Composite Oracle. Testing runs until a stop condition defined in (6) is met: runtime,
number of tests executed, or number of tests failed. When testing ends, results are displayed in (7).
(6) More options. This button toggles the display of advanced options, which are organized into
two tabs: reporting and stopping. The reporting tab allows the user to choose whether TerzoN
reports all test results or only those that failed. By default, all test results are reported. The stopping
tab allows the user to specify when testing should stop, e.g., after a maximum period of time, after
a maximum number of tests, or after a maximum number of failed tests. By default, TerzoN runs up
to 1,000 tests and for up to 3 seconds (with no limit on the number of failed tests) to ensure the tool
provides rapid feedback to maintain the user’s attention. Longer testing sessions may be configured.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:7

(7) Results grid. This pane displays a set of relevant category tabs, each containing a grid of test
cases and results that the user may sort by clicking on the column heading. Each test is assigned a
category according to the Composite Oracle’s Judgment (𝐽 ′) as follows: tests with conflicting results
(𝑢𝑛𝑘𝑛𝑜𝑤𝑛), failed tests (𝑓𝑎𝑖𝑙), and passed tests (𝑝𝑎𝑠𝑠). Category tabs containing no results are not
displayed. To direct user attention to tests that are more likely to reveal errors, the tabs are shown
in the order above. Each row of the grid contains a test case with its input, output, and individual
oracle judgments. An oracle judgment is grayed out if a judgment at a higher level of the hierarchy
(𝐽𝐻) has precedence, such as in (7) of Figure 1 where for input “XCX,” the implicit oracle’s pass
judgment is overruled by the property-based oracle’s fail judgment. The example-based oracle
allows the user to mark a test as passed by clicking the test case’s checkmark icon or as failed by
clicking the X icon. When testing runs again, TerzoN re-checks the example oracle by matching the
inputs. We opted to display test cases in table form to minimize the user’s reading effort.
(8) Pin button. After TerzoN displays test results, the user may add any of the generated tests to
the persistent test suite by pressing the Pin button next to the test result on the results grid (7).
The persistent test suite is in Jest [62] format. When the test button (5) is pressed again, pinned
tests are re-executed with their test results displayed at the top of the grid above newly-generated
tests. When a test is un-pinned, its corresponding Jest unit test is removed from the file system.

3.5 Scope and Limitations
TerzoN has a number of important limitations; however, we found it to be a useful vehicle for
exploring the practical aspects of a Composite Oracle as well as for evaluating how a testing tool
with a Composite Oracle might affect a user’s ability to efficiently and effectively generate tests
(see Section 4). TerzoN supports exported TypeScript functions that have parameters of types: finite
numbers (integers and floats), strings, booleans, literal object types, n-dimensional arrays of any of
the previous types, as well as optional and mandatory parameters. TerzoN does not implement test
case minimization, its example-based oracle only allows definition of a single expected result, and
the tool does not check for non-determinism. As with NaNofuzz, TerzoN’s default input ranges are
determined using type-based heuristics, and its input generator is much less expressive than those
found in industrial PBT tools. In Section 9 we describe plans to broaden support as TerzoN matures.

4 EMPIRICAL EVALUATION
We evaluated TerzoN using a randomized controlled human trial [54]. An overview of the design is
shown in Figure 2, and the data and methods are summarized in Table 1. Usability inquiries into
software engineering tools are appropriate because software engineers are users, too [43]. ISO’s Us-
ability Definitions and Concepts (9241-11:2018) [32] defines usability as the “extent to which a sys-
tem, product, or service can be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use.” In an industrial setting, Sadowski and Zim-
merman [59] similarly emphasized the importance of evaluating software engineering tools along
these three dimensions. Therefore, we aimed to answer three variants of the following question:

Research Questions (RQ)

Relative to standard practice, to what extent may TerzoN affect X, where the values of X are:
(RQ1) X = the number of bugs a user accurately identifies
(RQ2) X = the user’s confidence in the test activity
(RQ3) X = the user’s time on the testing task

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:8 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

�����
������

�������
�����������

��
	

�������
�����������

��
	

�����

�������� ������ �������� ������ ������

����������

������

�����������������������������������
�� ��������������������	
�� ������������������������������	
 � ������������	
�� ������������� 	

��������������������������������������
�������������������������������	
�����������������������������	

������������������������������	

������ ������ ������������

���������� ���������� ���������� ����������

Fig. 2. Visualization of study task sequence (see Section 4). Participants were randomly assigned by pairs
into Group A or Group B, which determined the treatment for each task. Each pair’s task sequence was also
randomized. Shaded tasks (e.g., tutorials) were not time-limited.

Hypothesis: We posited that TerzoN and its particular instantiation of the Composite Oracle
would improve users’ ability to effectively, confidently, and efficiently test programs.

Our hypothesis seemed reasonable for a number of reasons. First, TerzoN’s initial set of tests can
direct the user’s attention to certain types of likely-incorrect execution examples (e.g., NaNs, crashes)
without much user effort. Second, other researchers have said that users have difficulty coming
up with properties to test [26, 27, 66], and the Composite Oracle provides users a way to continue
refining a set of tests by annotating examples even if a testable property does not come to their
minds. Finally, once the user writes code to test a property, the Composite Oracle uses the annotated
examples to find executions where the properties pass an execution that should fail—and vice-versa.

4.1 Method
A randomized controlled human trial is recommended as the “gold standard” for evaluating whether
users perform better with one tool or another [43, 54]. However, human evaluations in software
engineering are rare [34], and recruiting a sufficient number of professional software engineers
to achieve statistical power in a human evaluation is even more rare. One approach to reduce the
number of participants required for statistical significance is to select a within-subjects design with

Table 1. Measurements, instruments, and methods

Research
ID Measurement Instrument Question Analysis Method(s)
1 Bugs Elicited Scoring Rubric RQ1.1 ANOVA, Fisher’s exact test* [54]
2 Bug Descr Accuracy Scoring Rubric RQ1.2 ANOVA, Fisher’s exact test† [54]
3 Confidence Likert Scale RQ2 ANOVA, Fisher’s exact test† [54]
4 Task Time Elapsed Time RQ3 ANOVA, paired 𝑡-test* [54]
5 Tool Usability SUS [9] Diagnostic Direct comparison
6 Task Realism Likert Scale Diagnostic Direct comparison
7 Tool Comparison Free-form Survey Diagnostic Thematic Analysis [8]

*=two-tailed; †=Mehta and Patel r×c [40]

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:9

repeated measures such that participants use both treatments to complete the same or matched
tasks. While such a design would reduce the recruiting burden, a within-subjects repeated-measures
design is not suitable for this study due to the task’s high learning effect: once a participant discovers
a bug, they do not quickly forget it. Consequently, a between-subjects randomized controlled human
trial design was more appropriate, despite its offering less statistical power for the same number of
participants. In our design, participants used both treatments, but unlike a within-subjects design,
they did so on different tasks. We could therefore ask participants to rate relative usability and
provide comparative feedback about both treatments to provide diagnostic insight into why one
treatment might have a measured effect. Since we collected timing data, a think-aloud protocol
was not appropriate. Instead, we collected qualitative data in the post-survey. Fatigue and learning
effects are important problems to address in such a design, and we controlled for such effects by
randomizing the task and treatment sequence. To minimize influence on participants, we did not
disclose that we created TerzoN; rather, we characterized both treatments as tools participants
might have used previously. Due to practical limits of time and recruiting of professional software
engineers [13], our study design evaluated the effects of TerzoN’s unique user interface and its
particular instantiation of the Composite Oracle at once with the trade-off that apportioning benefits
between these two contributions is not possible. We piloted the study with 7 pilot participants in
order to refine the tasks and instructions. This study was reviewed by our Institutional Review Board.

4.2 Treatments

TerzoN was the intervention treatment described in Section 3 that builds upon NaNofuzz [14] by
implementing a particular instantiation of the Composite Oracle and by surfacing that Composite
Oracle in the TerzoN user interface. Consequently, TerzoN users could assert correctness in various
ways and find bugs in sophisticated and complex situations.
Fast-check [17, 19] was the control treatment we selected because it is particularly well-suited
for the types of tasks in this study. Fast-check is a popular and powerful property-based testing
tool for TypeScript with 3.7 million downloads per month as of August, 2024 [18] that is used
successfully in industrial-scale software engineering projects such as TypeScript itself, Jest, Google
Docs, React, and Jasmine [19]. Similar to TerzoN, fast-check supports property-based based oracles.
Consequently, fast-check is an appropriate control treatment. To control for differences that we did
not want to measure, we used the Jest Runner [63] Visual Studio Code extension so that participants
could run fast-check via a GUI button in the IDE, similar to the way they executed TerzoN. We
considered using NaNofuzz [14], the tool on which TerzoN was built, as the control treatment;
however, NaNofuzz was very limited such that it only detected a few classes of bugs, such as
exception, Not-a-Number (NaN), and null, which meant that NaNofuzz, critically, was unable to
evaluate correctness. Given the foregone conclusion of NaNofuzz’ failure to succeed at the more-
sophisticated tasks in this study, NaNofuzz was not an appropriate control treatment.

4.3 Tasks
As shown in Figure 2, the experiment included a tutorial for each of the two treatments and
three testing tasks. The three tasks varied: (a) the PUT (see Table 2) according to the participant’s
randomized task sequence and (b) the treatment (see Section 4.2) according to the participant’s
random group assignment and task sequence number. In each of the tasks, the participant used
Visual Studio Code and the treatment to generate test cases and elicit bugs in the program under
test. Upon starting the task, we verbally instructed the participant to open the PUT in the IDE
and to find allowed program inputs, if any, that caused the program to behave contrary to its
specification. We did not reveal the number of bugs in each program and implied that the program

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:10 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

Table 2. Programs under test used in the study tasks

Task Program Found On Lines Error Class(es) Bugs
primed Rosetta Code 40 incorrect behavior 2
roman Rosetta Code 13 incorrect behavior, out-of-range output 2
normd RunJS 5 incorrect behavior, out-of-range output 2
lcm Rosetta Code 11 incorrect behavior, out-of-range output 2

may or may not contain bugs; however, as shown in Table 2, each program had two bugs. We
specified which treatment to use and, if fast-check, directed the participant to open the test file “to
the side” so that the tests and the code under test were simultaneously visible. The comment at the
top of the program specified the allowed input values, output values, and expected behavior. For
each task we provided a working example property test. Once the participant indicated they were
ready, the start time was recorded and the task began. Each participant’s screen and audio were
monitored and recorded via Zoom to ensure use of the intended treatment and PUT. During the
task, the participant tested the program using the treatment and generated test cases. At the end of
15 minutes—or when the participant indicated they were done testing—the researcher recorded the
stop time and verbally instructed the participant to complete the post-task survey, in which the
participant recorded their understanding of the generalized input domains that elicited bugs and
recorded their confidence in the testing activity according to a 5-point Likert scale. We provide our
task materials in the supplementary materials.
Programs Under Test. Ko et al. suggests that researchers consider using “found” tasks in a tool
evaluation to increase the validity of their study’s results [34]. We found 11 incorrect TypeScript
programs on Stack Overflow, Rosetta Code, RunJS, and LeetCode. We added type annotations
where needed to avoid distracting IDE warnings and ensured each PUT included a description of
its allowed inputs and expected outputs. User study tasks need to be sufficiently brief so as to be
achievable within the time a recruited professional engineer might be available [13]. Consequently,
we ran a series of pilots in which students used various combinations of the 11 buggy PUTs, and
we eliminated PUTs that the pilot users could not finish testing in 15 minutes regardless of the
treatment used. This resulted in the 4 PUTs shown in Table 2.
Task Infrastructure. To avoid some of the difficulties associated with deployment of experimental
study software to remote software engineers [13], we hosted the tasks on GitHub Codespaces [25],
which provides a web-based Visual Studio Code IDE and Linux virtual machine such that a remote
software engineer may edit, run, test, and debug code using a complete IDE inside a web browser.
Tutorials. We designed similar tutorials for TerzoN and fast-check: both had three short exercises
and participants could complete each tutorial in roughly ten minutes (see supplemental material).
Writing Property Tests. Fast-check and TerzoN both require the user to write TypeScript code to
check whether a property holds across many input and output examples. This delegation to the
user is typical of property-based tools; thus, study participants who wanted to check a property of
a program in our study needed to write snippets of TypeScript code. As an example, for the primed
task program that performs prime decomposition of an integer, 𝑥 | 𝑥 ∈ Z≥2, the correct output is
an array of prime numbers, the product of which equals the program’s input, 𝑥 . Listings 1 and 2,
below, show two property tests written by users in the study—one for TerzoN and one for fast-
check—that pass if all elements of the output array are prime; otherwise, the test fails. Line 1 and
the specific variable names used in each listing reflect differences among the two tools. However,
as you can see in lines 2–6, both listings encode the property that the test passes if all elements in

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:11

the output array are prime. Otherwise, the test fails. What is noteworthy is that the property test
code snippets were similar across both tools.
1 export function primeFactorizeValidator1(r: FuzzTestResult): boolean {
2 for (let i=0; i<r.out.length; ++i) {
3 if(! isPrime(r.out[i])) return false;
4 }
5 return true;
6 }

Listing 1. TerzoN primed property test written in TypeScript by P09

1 fc.property(fc.integer ({min: 2, max :100}) , (n) => {
2 const arr = primeFactorize(n);
3 arr.forEach(element => {
4 expect(isPrime(element)).toEqual(true);
5 });
6 }

Listing 2. Fast-check primed property test written in TypeScript by P20

4.4 Participants
Finding and recruiting a large and/or representative sample of professional software engineers is
difficult [1, 4, 13, 34]. We recruited professional software engineers via LinkedIn, Mastodon, and e-
mail—both via direct messages and via public postings that described our study and included a link to
the screener survey, which screened for participants: (i) in the United States or Canada (as required
by our IRB), (ii) who were over 18, (iii) had at least one year of professional programming experience,
and (iv) had programming experience with TypeScript. We offered participants a $30 Amazon gift
card and did not offer bonuses. When recruiting on LinkedIn, we selected participants located in
the United States and Canada with TypeScript experience and more than one year of professional
software engineering experience in their profiles. We asked e-mail and direct message recipients
to recruit others they thought might be open to participating, though we did not offer incentives
to do so. From August 9 to September 5, 2024, the screener survey collected 168 responses and
automatically classified 38 responses as likely being eligible, of which 24 were eligible humans that
scheduled sessions. 7 of the 24 were pilot participants, 1 was a pilot no-show, 14 were participants
who completed the study, and 2 signed up but did not attend a session before the study period ended.

In the screener survey, potential participants self-reported: gender; professional software engi-
neering experience; hours of coding per week; and experience with property-based testing tools,
TypeScript, and VS Code. The screener included timed questions recommended by Danilova [12] to
eliminate non-programmers. We intended to recruit a sample of professional TypeScript engineers,
and researchers say that adoption of PBT tools is low among this population [7, 26, 27]; therefore,
we accepted participants regardless of their level of PBT experience. We excluded participants who
lacked TypeScript experience, and the consented participants were capable of writing and read-
ing TypeScript code such that they could complete the study tasks. The final page of the screener
allowed the participant to choose an available time slot.
Participants were assigned to groups using matched pair random assignment and a physical

coin flip. We classified participants by self-reported professional coding experience: 1–5 years,
6–10 years, and 11+ years. When a participant scheduled a session, we assigned a participant
number and checked to see if a previous participant with the same experience level was awaiting a
match. If no participant with the same experience level was awaiting a match, we flipped the coin
to determine the participant’s group and used Google RNG to randomize the participant’s task

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:12 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

Table 3. Randomized controlled human trial participants (𝑛 = 14)

Professional Coding Self-Reported Expertise with:
ID Gender Group Experience Hrs/Week TypeScript PBT Tools VS Code
P09 Female A 1-5 years 20–30 Beginner No experience Expert
P10 Female A 1-5 years 30–40 Beginner Intermediate Advanced
P11 Male B 1-5 years 20–30 Intermediate No experience Expert
P12 Male A 1-5 years 1–5 Beginner No experience Advanced
P13 Female B 1-5 years 30–40 Advanced No experience Advanced
P14 Male B 1-5 years 1–5 Beginner No experience Advanced
P15 Male B 1-5 years 5–10 Intermediate No experience Intermediate
P16 Male B 1-5 years >40 Beginner No experience Advanced
P17 Male A 1-5 years 1–5 Intermediate No experience Advanced
P19 Male B 1-5 years >40 Advanced Advanced Expert
P20 Male A 1-5 years 10–20 Intermediate No experience Intermediate
P21 Male B 11+ years 10–20 Advanced No experience Expert
P23 Male A 1-5 years 10–20 Intermediate Beginner Advanced
P24 Male A 11+ years >40 Beginner Advanced Advanced
P01–P08 represent pilot users. P18 and P22 did not attend a session prior to the close of the study period.

sequence. Then the participant was flagged as needing a match. When the next participant with
the same experience level scheduled a time slot, the new participant was matched to the previous
one such that one participant would be randomly assigned to group A or B, the other assigned to
the other group, and the paired participants would have the same randomized task sequence.

Table 3 summarizes the participant demographics, which were as follows: 3 participants identified
as female, 11 as male, 0 as non-binary, and 0 did not disclose; 2 participants had 10+ years of
professional experience, 0 had 6—9 years, and 12 had 1—5 years; 5 participants reported spending
30+ hours coding per week, 5 reported spending 10–29 hours , and 4 reported 1–9 hours.

4.5 Measurements
The experiment included the following measurements, which are summarized in Table 1:

(1) Bugs elicited. Prior to the study, we created an unambiguous rubric that listed the bugs in each
task program and the input sets that elicited each bug. The participants’ tests were evaluated by
the first author against this rubric to determine how many bugs were elicited.

(2) Bug description accuracy. While the prior measure was concerned with whether the tool
elicited a bug, this measure was concerned with how accurately the user understood the bug from,
e.g., the tool’s output. After generating tests, the participant typed in the general inputs that elicited
any bugs found. For example, suppose a program throws an exception for the set of inputs, Z>1.
According to the rubric, a full score was given for identifying the entire set (Z>1). A half score was
given for identifying only a subset (e.g., Z>2) of the rubric’s described set. Finally, a half score was
deducted if the participant’s set included allowed inputs that did not elicit any bug (e.g., Z<1). Each
task contained two bugs such that the participant’s maximum possible score for each task was 4.

(3) Confidence. At the end of each task, the participant reported their confidence in identifying
the inputs that elicited bugs using a 5-point Likert scale.

(4) Task time. At the start of each task, we recorded the begin time manually. When the participant
finished creating tests or ran out of time, the researcher recorded the end time.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:13

(5) Tool usability. The System Usability Scale (SUS) is a standard measure of system usability. In
the post-survey, participants rated both treatments using the standard SUS questions, which were
scored according to the procedure described by Brooke et al. [9]. The order of the treatments in the
survey was randomized to counter-balance ordering effects.
(6) Task realism. Participants rated their agreement with the statement, “I thought the testing
tasks in this study resemble tasks I might encounter outside the study,” using a Likert scale.
(7) Tool comparison. Participants answered free-form comparative survey questions regarding
each treatment’s: (i) effectiveness in testing, (ii) ease of use, (iii) fit with the participant’s test and
debug workflow, and (iv) opportunities for improvement.

4.6 Data Analysis
As shown in Table 1, this mixed-methods experiment quantitatively analyzed task data to answer
the research questions. We further designed a diagnostic explanatory analysis to help us explore the
quantitative results. We discuss the analysis for each measurement from Figure 2 and Table 1 below.
(1) Bugs elicited. We used a randomized matched pair design (see Section 4.4) based on years of
professional experience. From 14 total participants, this yielded 7 pairings. Within each pairing, we
created two pseudo-participants, one by taking all the data from the pairing using fast-check, and
another by taking all the data from the pairing using TerzoN. These pseudo-participants naturally
partition into two groups, one exclusively using each treatment. We then performed a two-tailed
Fisher’s exact test on the categorical data. There were a total of 6 bugs that each of the 14 participants
could find, so we first allocated 6 · 14 = 84 possible bugs, and then within the two groups (fast-check
and TerzoN), counted up the number of bugs actually elicited by participants through a test case. For
each task and treatment, we performed an ANOVA using the presence of the intervention as a factor
and analyzed the effect of other independent variables: years of professional experience, experience
with TypeScript, experience with PBT tools, experience with VS Code, and the task sequence.
(2) Bug description accuracy. This analysis is the same as (1), except we used categories corre-
sponding to the recorded accuracy values of 0–4. We counted up the number of accuracy scores in
each category for the two groups, as shown in Table 5.
(3) Confidence. This analysis is the same as (1), except that we used categories corresponding to
the possible confidence scores 1–5, as shown in Table 5.
(4) Task time. This analysis is the same as (1), except that we used a two-tailed paired 𝑡-test due
to this measure containing continuous time data rather than categorical data. See Table 5.
(5) Tool usability. We counted the number of participants who gave a higher System Usability
Scale [9] score for TerzoN vs. fast-check and divided it by the number of participants. We calculated
the mean and standard deviation of the SUS scores for each treatment.
(6) Task realism. We counted the number of participants who responded in the post-survey that
the tasks were realistic (vs. neutral, unrealistic) and divided the count by the number of participants.
(7) Tool comparison. We analyzed free-form post-survey data using the inductive thematic analysis
procedure described by Braun and Clarke [8], which outlines six phases and emphasizes: (i) the
phases are guidelines, not rules; (ii) thematic analysis is “not linear” and movement among phases is
expected; and (iii) the process should not be rushed. Going beyond the recommendations of Braun
and Clarke [8], the second author established replicability of the first author’s result by re-coding all
the data for the 14 participants using the first author’s code book.We calculated inter-rater reliability
using Cohen’s Kappa [54], which indicated a very good [52] level of agreement (𝜅 = 0.746).

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:14 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

4.7 Results
Below we report the results of the analyses described in Section 4.6.
(1) Bugs elicited. Table 4 shows that participants using TerzoN on average elicited 72% more bugs
(31/42) than when using fast-check (18/42). The Fisher’s exact test shown in Table 5 (Measure 1)
indicates the differences in this measure are statistically significant (𝑝 <0.01). The ANOVA indicates
that experience with PBT was positively correlated with bugs elicited (𝑝 <0.01) on the roman task.
(2) Bug description accuracy. Table 4 shows that participants using TerzoN described bugs more
accurately (48/84) than when using fast-check (20/84). The Fisher’s exact test shown in Table 5
(Measure 2) shows the differences are statistically significant (𝑝 <0.01). The ANOVA indicates that
experience with PBT was positively correlated with bugs elicited (𝑝 <0.05) on the roman task.
(3) Confidence. Table 4 and Figure 3 show that participants using TerzoN on average reported 39%
higher confidence (3.57/5.00) than when using fast-check (2.57/5.00). The Fisher’s exact test shown
in Table 5 (Measure 3) indicates the measured differences are not statistically significant (𝑝 >0.1).
The ANOVA indicates that TerzoN was positively correlated with confidence on the normd task
(𝑝 <0.05), as was experience with TypeScript (𝑝 <0.05) on the roman task.
(4) Task time. Table 4 and Figure 3 show that participants using TerzoN, on average, completed
tasks 16% more quickly than with fast-check. The two-tailed paired 𝑡-test shown in Table 5 (Measure
4) indicates the differences in this measure are statistically significant (𝑝 < 0.05). The ANOVA
indicates that PBT experience was positively correlated with task time (𝑝 <0.05) on the lcm task.
(5) Tool usability. Figure 3 shows that participants rated TerzoN (mean=72.68, SD=26.57) slightly
better on the System Usability Scale [9] than fast-check (mean=69.64, SD=27.35). 8 participants
gave TerzoN a higher SUS score, 2 rated both tools the same, and 4 gave fast-check a higher score.
(6) Task realism. 93% (13/14) of participants indicated the tasks in this study were realistic.
(7) Tool comparison. Our inductive thematic analysis identified seven repeated themes:

T1: Organized test results can help me
T2: Flexibility in specifying oracles can help me
T3: Flexibility in generating inputs can help me
T4: Tools should help me work more efficiently

T5: Both tools were functionally similar
T6: Similarity to a tool I know can help me
T7: Specific tool suggestions, bug reports

��
��
��
���
��
��

��
��
�
��
��
��
��
��
��
��
��
�
�

��
�

��
��
��
	�
��

��
���
��
��
���
�
��
��

��
�
��
��
�
��
��
��
�	�
��

��
���
�
��
�

��
��
��

��
�
��
���
��
��
�
��
��
��
�

��������������� ��������������� ��������������� ��������������� ���������������
	���������������� 	���������� 	������
����� 	����������� 	 ����������

Fig. 3. Violin plots [31] showing the results by treatment for Measures 1-5. Y-axis for Measures 1–4 is the sum
of three tasks for paired participants. Y-axis for Measure 5 is the SUS [9] score range. Mean and observations
are indicated by black and gray dots, respectively. FC abbreviates fast-check.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:15

Table 4. Quantitative task results summary for measures 1–4 from Table 1 (𝑛 = 14)

Tasks (see Table 2)
primed roman normd lcm Σ

Treatment Mean SD Mean SD Mean SD Mean SD Mean SD

Measure 1: Bugs elicited; range 0–1 (1=all bugs elicited)
Fast-check 0.40 0.37 0.42 0.34 0.50 0.35 0.42 0.19 0.43 0.32
TerzoN 0.80 0.40 0.67 0.24 0.50 0.35 0.92∗∗ 0.19 0.74∗∗ 0.33

Measure 2: Bug description accuracy; range 0–1 (1=all bugs accurately described)
Fast-check 0.25 0.22 0.25 0.14 0.25 0.18 0.21 0.09 0.24 0.16
TerzoN 0.70 0.37 0.58 0.31 0.25 0.25 0.67∗∗ 0.28 0.57∗∗ 0.35

Measure 3: Confidence; range 0–1 (1=extremely confident)
Fast-check 0.56 0.23 0.43 0.33 0.65∗ 0.09 0.47 0.32 0.51 0.29
TerzoN 0.80 0.13 0.77 0.14 0.40 0.14 0.80 0.28 0.71 0.24

Measure 4: Elapsed time (in seconds); lower is better
Fast-check 719 186 777 174 581∗ 197 781 213 727 207
TerzoN 360∗∗ 72 585 228 879 37 672 175 612∗ 235

Statistically significant differences are marked as: ∗ (𝑝 <0.05), ∗∗ (𝑝 <0.01)

Table 5. Quantitative results for measures 1–4 from Table 1. FC abbreviates fast-check.

Measure 1 FC TerzoN Σ

Bugs Elicited 18 31 49
Bugs Not Elicited 24 11 35

Σ 42 42 84

Measure 2 FC TerzoN Σ

accuracy = 0 5 3 8
accuracy = 1 12 3 15
accuracy = 2 4 6 10
accuracy = 3 0 3 3
accuracy = 4 0 6 6

Σ 21 21 42

Measure 3 FC TerzoN Σ

confidence = 1 8 2 10
confidence = 2 2 2 4
confidence = 3 4 4 8
confidence = 4 5 8 13
confidence = 5 2 5 7

Σ 21 21 42

Measure 4 FC TerzoN
P09 / P13 time 34m 39s 25m 05s
P10 / P15 time 45m 00s 38m 08s
P11 / P12 time 43m 15s 27m 59s
P14 / P23 time 36m 09s 37m 17s
P16 / P20 time 36m 18s 37m 49s
P17 / P19 time 22m 59s 19m 43s
P21 / P24 time 38m 09s 31m 09s

mean time 36m 21s 31m 36s

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:16 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

5 DISCUSSION
Our experiment investigated the three research questions introduced in Section 4. We now discuss
how the answers to these questions are suggested by our results.
RQ1. Relative to standard practice, to what extent may TerzoN affect the number of bugs a
user accurately identifies? TerzoN improved the accuracy of bug identification. Table 4 shows that
participants using TerzoN on average elicited 72% more bugs (Measure 1, 𝑝 <0.01) and accurately
described more than twice the number of bugs (Measure 2, 𝑝 <0.01) than when using fast-check.
RQ2. Relative to standard practice, to what extent may TerzoN affect the user’s confidence
in the test activity? Table 4 shows that participants using TerzoN reported numerically 39% higher
confidence, but this result did not reach statistical significance with 14 participants.
RQ3. Relative to standard practice, to what extent may TerzoN affect the user’s time on
the testing task? TerzoN sped up testing tasks. Tables 4 and 5 show that participants on average
completed tasks 16% faster with TerzoN than with fast-check (𝑝 <0.05).
Why did TerzoN show the positive results above? When did participants encounter problems
using TerzoN? Our participants compared both treatments in the post-survey, and we structure the
remainder of our discussion based on the diagnostic data we collected in Measures 5 and 7.

5.1 TerzoN Generated More Tests and Organized the Test Results Effectively (T1)
Users said that TerzoN provided more test results than fast-check (P12), made test results easy to
find and compare (P11, P14, P15, P19, P20), and provided a way to track interesting examples across
test runs (P23, P24). For fast-check, users said that they wanted to see the outputs of more test
cases beyond that of the counter-example (P13, P14, P20).

“[TerzoN] was much easier to use. Especially, when I can see a complete list of examples
of failing or passed test cases side-by-side” (P19.Q11)
“[TerzoN’s] ability to track / pin counterexamples across runs was a big plus, as it was
a more UI-friendly tool than fast-check’s command line output.” (P23.Q11.1)

5.2 TerzoN Users Tested Effectively Using Multiple Oracles (T2)
Users said that TerzoN’s ability to work with different types of oracles facilitated testing. For
example: generating tests with the implicit oracle made it easy to start testing (P14, P23), it was
easy to annotate the correctness of generated examples (P10, P20), and when manually annotating
examples got tedious, the ability to write a property function was helpful (P10, P20).

“[TerzoN] was helpful in the sense I could write [a property] validator, there was
[implicit] aspect, and then I can always validate the results myself.” (P10.Q11.1)

P12 stated that it was “easier to write tests” with TerzoN and that “fast-check requires every test to
be manually written.” For example, P12 elicited both bugs in the primed task in 4minutes, 55 seconds
using all three of TerzoN’s oracles, including writing a property test. In contrast, the only fast-check
user who elicited both bugs in the same task (P20) required 15 minutes to write a property test
equivalent to P12’s. As shown in Section 4.3, the task of writing property test code was similar for
both tools. Consequently, it is possible that TerzoN’s Composite Oracle and the coherently-organized
test result feedback provided by TerzoN’s user interface helped users think of properties to test.

The Disagree tab, which shows results where there is a disagreement between the property- and
example-based oracles, appeared 25 times across 7 users (P10, P15, P19, P20, P21, P23, P24). For
example, P15 generated initial tests for the normd task with the implicit oracle and then marked an
example with a NaN output as incorrect. The user then wrote a property test, return !(output<0).
But this assertion is incorrect: it passes when output=NaN because NaN<0 evaluates to false. When

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:17

the user executed the property test, TerzoN compared the property-based judgement 𝑝𝑎𝑠𝑠 to the
example-based judgement 𝑓𝑎𝑖𝑙 and notified the user of the contradiction using the Disagree tab.
Similarly, P24 used the implicit oracle to generate initial tests for the roman task and then annotated
incorrect examples such as “IV” and “”. Based on the user-provided examples, TerzoN’s user
interface alerted the user that the property validator was passing examples that the user thought
should 𝑓𝑎𝑖𝑙 . P24 then elicited and accurately described both bugs in the task in under 10 minutes.

5.3 Generated Inputs May Need to Satisfy Complex Constraints (T3)
P13 and P19 emphasized the need to generate inputs that satisfy complex constraints. While creating
complex input generators was not a focus of our study, it is an important area of inquiry.

“It could also be easier in both tools to specify more complex constraints that the inputs
should satisfy.” (P13.Q16.2)

5.4 TerzoN Made Common Tasks Efficient (T4)
Users stated that TerzoN was “better for iteration” (P23), “quick” (P15, P20), ”faster” (P11), “easy”
(P20, P24), required less code (P12), and required less memorization of syntax (P15, P19).

“[TerzoN] means I have to memorize less syntax to do what I want.” (P19.Q13.1)
“[TerzoN is] GUI based, quick iterations, less code.” (P12.Q13)

5.5 Both Tools Were Functionally Similar (T5)
While we point out that TerzoN has some important limitations in Section 3.5, users stated that the
basic functionally of the two tools was similar (P10, P11, P13, P14, P17, P19).

“They both use & support property-based testing & seems to be able to be integrated
into any project pretty easily.” (P19.Q15)
“I could see myself getting used to both tools for testing.” (P13.Q15)

5.6 Users Who Rated Fast-check as More Usable Still Performed BetterWith TerzoN (T6)
It is not surprising that some users rated fast-check as more usable than TerzoN given that fast-
check is designed to look and function like testing tools that software engineers use daily. However,
users were able to work with TerzoN after a brief (mean=10m 44s) tutorial, and twice the number
of users (8/14 vs. 4/14) gave TerzoN a higher SUS score than fast-check after using both tools. In
the post-survey data, the 4 users (P10, P13, P16, P17) who favored fast-check said they did so at
least partially due to its similarity to tools they were used to. However, the 4 users who favored
fast-check on average still found more bugs and completed tasks in less time with TerzoN.

“I am more familiar with the way fast-check works, where you write a test and run it
and get results in the terminal.” (P13.Q13.1)
“It is easier and faster for me to use fast-check because of a smaller learning curve.
Although, the difference is not much.” (P17.Q15)

5.7 TerzoN Needs Further Improvement (T7)
Users made various suggestions about how TerzoN might be improved, e.g., allowing use of TerzoN
outside Visual Studio Code (P15), improved typing of the PUT input and output variables within
the property validator functions (P14, P23), storing TerzoN’s validator functions in a separate file
(P16), and automatically grouping and categorizing failing results (P17).

“[TerzoN] was pretty great, except for the few things such as the arguments i.e., r.in
and r.out. Except that, everything was good.” (P14.Q16.2)

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:18 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

6 THREATS TO VALIDITY OF THE STUDY
This study has a number of limitations that might be addressed in future studies.

Internal Validity. To ensure that the study duration fit within a length of time that might be
acceptable to professional engineers, we limited the maximum time for each task to fifteen minutes.
This limit stopped participants in 17 tasks (6 with TerzoN, 11 with fast-check). Given this limit
affected fast-check tasks more often than TerzoN tasks, it is possible that accuracy for fast-check
tasks might be higher had no time limit been imposed. As our study design required participants to
use both tools, it is possible that effects from this specific combination of tools was not controlled.

External Validity. We adopted Ko et al.’s [34] guidance to use “found” tasks to improve the realism
of our tasks and the validity of our results; however, it is possible that the tasks we selected from
Rosetta Code and RunJS were neither realistic nor representative. For instance, task-based user
studies such as ours must select tasks that are sufficiently brief so as to fit within the time that a
professional software engineer is available. While we are not aware of reasons why it may be the
case, it is possible that the Composite Oracle might exhibit different properties with programs larger
than those used in our study. During the post-survey, we asked participants to what extent the tasks
they encountered were realistic, and 93% (13/14) indicated the study tasks were similar to tasks they
might encounter outside the study. Our sample of professional software engineers may be dissimilar
to the overall population of software engineers in important ways that are not quantified. Due to
procedural difficulties with securing approval to recruit participants outside of the United States
and Canada, our sample does not include software engineers from other important geographies.
The TerzoN prototype used in this study possesses capability necessary to evaluate the hypothesis
but lacks some important features that we discuss in Section 3.5. Tools with more functionality
may be more difficult to use [42], and a tool with more features may provide a different effect.

Construct Validity. Practical limits of time and recruiting of professional software engineers [13,
34] required us to prioritize the most vital research questions; consequently, our study design
evaluated TerzoN’s particular user interface and instantiation of the Composite Oracle all at once.
However, we cannot apportion the effects among these two contributions. Effectiveness (RQ1)
investigated the number of bugs a user accurately identified while generating the tests and was
measured in two parts. RQ1.1 measured how many known bugs the user’s tests elicited, which is
an important quality component: test suites that find actual bugs may be considered more effective.
RQ1.2 measured the quality of the testing activity by assessing the extent to which a user could
accurately describe the bugs elicited. Other measures of quality exist that we did not assess, such as
code coverage, test suite size, and mutants killed. However, it was not feasible to test all measures
of quality in study sessions of limited duration. Confidence (RQ2) investigated the participant’s
confidence in the testing activity. Sadowski and Zimmermann [59] explain that “satisfaction may be
impacted by the real or perceived effectiveness of a user’s personal work.”Wemeasured self-reported
confidence as a proxy variable for satisfaction, but it is not clear to what extent a user’s confidence
may relate to overall satisfaction. Task time (RQ3) investigated the time a user required to test
the PUT, which was measured as time elapsed from the beginning to the end of the testing task.

7 RELATEDWORK
Randoop [48], NaNofuzz [14], and IntelliTest [41] use an implicit oracle and generate persistent test
cases. Unlike Randoop andNaNofuzz, TerzoN can also evaluate correctness. IntelliTest runs in an IDE
and can evaluate correctness. Unlike IntelliTest, TerzoN uses a Composite Oracle that can identify
inconsistent test assertions and was evaluated with humans in a randomized controlled human
trial. PBT tools such as Hypothesis [38] and fast-check [19] can evaluate correctness. However,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:19

TerzoN differs by its use of a Composite Oracle that can identify inconsistent test assertions and
that also incorporates implicit and example-based oracles.

Rothermel et al. [55, 56, 57] performed foundational work in testing spreadsheets and evaluated
“What You See Is What You Test” (WYSIWYT), a code-free usable testing interface for end-users.
Fisher et al. [21, 22] expanded this work by creating “Help Me Test” (HMT), which used random and
search-based techniques. Similar to TerzoN, these tools display tests and results as elements within
a graphical user interface, but do so within the context of spreadsheets and not within an IDE.
Fraser et al. [24] evaluated the EvoSuite ATUG with human software engineers and reported

that participants found fewer bugs with EvoSuite, despite the tool generating test suites that had
higher code coverage. EvoSuite used the PUT as the oracle; consequently, the test cases EvoSuite
generated could not evaluate correctness. The designers of EvoSuite expected users to manually
find and fix any incorrect test cases, but EvoSuite did not provide any affordances to support users
in this task. The EvoSuite study used qualitative data to suggest that poor readability of test cases
generated by EvoSuite may have caused the study’s negative result, and this finding gave focus
to research that aimed to improve test case readability (e.g., [29, 44, 49, 58, 60]). Unlike EvoSuite,
TerzoN detects bugs in current programs, provides support for finding contradictions among test
cases, and has shown positive results relative to a state-of-the-art testing tool, fast-check, in a
randomized human trial with professional software engineers.
Ng et al. [45] observed that one of the top barriers reported for automatic testing tools is poor

usability. Li et al. [36] called for improved usability of random testing tools. Prado and Vincenzi
[50] and Arcuri [3] observed that ATUGs like EvoSuite are relatively unused in industry and that
tool designers often prioritize technical or secondary measures over the tool’s performance with
users. Rojas et al. [53] observed users and found the need for improved EvoSuite usability and for
it to be integrated into the IDE. In a recent industry blog post [61], James Sowers questioned many
interaction aspects of current testing tools such as Jest. With the goal of creating highly usable
testing tools, we designed TerzoN in reaction to the findings of the prior work as well as our own
observations of users interacting with various automatic test generation tools.

8 IMPLICATIONS FOR TESTING RESEARCHERS AND TOOL DESIGNERS
This study has a number of important implications for researchers and tool designers. TerzoN
evaluated favorably to fast-check on tasks where fast-check might be expected to have an advantage,
and this empirical result may point to the potential benefits of a new class of tool, Composite Test
Generators, which, in the example of TerzoN, incorporate various types of oracles and provide a
coherent user interface that allows users to assert correctness in various ways. Such tools might
benefit users by, e.g., (i) allowing users to continue refining a set of tests even when a property to test
is not coming to mind, (ii) calling attention to likely-incorrect properties by comparing them to other
(e.g., human-annotated) oracle judgments, and (iii) coherently organizing and displaying all test
results, including full details of passing tests. Continuing testing beyond the first failure by default
may also provide more feedback that helps users generate and debug their tests more efficiently.
Our empirical evaluation provides further support for prior assertions that empirical software

engineering testing researchers might achieve more impactful results by evaluating their tools
with users [14, 24] and by considering user efficiency and satisfaction in addition to effectiveness
when designing and evaluating tools [14]. Our experience designing TerzoN for this study implies
that some popular strategies for finding the simplest failing input might require adaptation to be
integrated with a Composite Oracle due to each input potentially being evaluated by multiple
oracles. The Composite Oracle’s hierarchical nature might also facilitate optimizations for large-
scale testing, such as short-circuit, lazy, and parallel evaluation of judgments.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

FSE089:20 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

9 FUTUREWORK
TerzoN includes a particular instantiation of the Composite Oracle that integrates 3 types of oracles;
however, other instantiations and other types of oracles are possible. Code and tests are now
being generated by Large Language Models (LLMs) [51, 65], and our study’s most experienced
participant said he uses LLMs to write his test cases (P21.Q16). However, LLM-generated code can
be incorrect in various [28, 37] and/or subtle ways, and users similar to participant P21 may benefit
from a Composite Oracle that compares LLM-based oracle judgments to those of other oracles and
alerts the user to contradictions. We would like to understand how users might interact with or
benefit from such a Composite Oracle that incorporates LLM-based oracle judgments.

TerzoN is available on the Visual Studio Code Marketplace [15], and we plan to use TerzoN in real-
world situations outside our study. As these situations may require more complex input generation
techniques and guidance, we plan to investigate how TerzoNmight provide more expressiveness and
control while retaining the ability to immediately start testing with an automatically synthesized
input generator function. We would also like users to be able to add their own example test inputs
more easily. Usability might vary with additional features [42], and it will be important to evaluate
how additional complexity may affect usability [59]. Future versions of TerzoN may support other
IDEs, other languages, and other types of oracles, in which case further studies would be required.

10 CONCLUSION
In this paper, we formally defined the Composite Oracle and presented TerzoN, an Automatic Test
sUite Generator (ATUG) that surfaces within its user interface a particular instantiation of the
Composite Oracle that incorporates property-based, example-based, and implicit oracles. With
TerzoN, a user may generate an initial set of tests using an implicit oracle with a single button
click, refine the tests by annotating the correctness of particular execution examples, and write
snippets of code that define properties of the program that judge current and future execution
examples. Because TerzoN’s Composite Oracle is a composition of multiple types of oracle that assert
correctness in various ways, TerzoN also compares judgments among the oracle types and alerts the
user when, e.g., a property-based test and a human-annotated example test yield conflicting results.
To empirically evaluate whether TerzoN’s particular Composite Oracle and user interface, to-

gether, might benefit users, we conducted a randomized controlled human trial with 14 professional
software engineers where TerzoN was the intervention treatment and the popular industry tool,
fast-check, was the control treatment. Participants using TerzoN elicited 72% more bugs (𝑝 <0.01),
accurately described more than twice the number of bugs (𝑝 <0.01) and tested 16% more quickly
(𝑝 <0.05) relative to fast-check. This positive empirical result may point to potential future impacts
of Composite Test Generators that report full test details and allow users to assert correctness in var-
ious ways using a coherent user interface. We hope that our contributions and empirical results spur
much-needed further research into testing tool usability, interventions that help users generate test
suites more effectively and efficiently, and appropriate evaluations of each intervention’s success.

11 DATA AVAILABILITY
Weprovide the data andmaterials to reproduce our results as supplementarymaterial [16], except for
video and audio data, which we are unable to share due to participant privacy and IRB restrictions.

ACKNOWLEDGMENTS
This work was supported in part by a CyLab seed funding award and by NSF grants 1910264,
2150217, and 2339775. Any opinions, findings, or conclusions expressed in this material are those
of the authors and do not necessarily reflect those of the sponsors.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:21

REFERENCES
[1] Bilal Amir and Paul Ralph. 2018. There is no random sampling in software engineering research. In Proceedings of the

40th International Conference on Software Engineering: companion proceeedings. 344–345.
[2] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen, Wolfgang Grieskamp, Mark Harman,

Mary Jean Harrold, Phil McMinn, Antonia Bertolino, J. Jenny Li, and Hong Zhu. 2013. An orchestrated survey of
methodologies for automated software test case generation. Journal of Systems and Software 86, 8 (2013), 1978–2001.
https://doi.org/10.1016/j.jss.2013.02.061

[3] Andrea Arcuri. 2018. An experience report on applying software testing academic results in industry: we need usable
automated test generation. Empirical Software Engineering 23, 4 (2018), 1959–1981.

[4] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research: a critical review and guidelines.
Empirical Software Engineering 27, 4 (April 2022), 94. https://doi.org/10.1007/s10664-021-10072-8

[5] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015. The Oracle Problem in Software
Testing: A Survey. IEEE Transactions on Software Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.
2372785

[6] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven Amann, and Andy Zaidman. 2017.
Developer testing in the ide: Patterns, beliefs, and behavior. IEEE Transactions on Software Engineering 45, 3 (2017),
261–284.

[7] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri, Drew
Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using Lightweight Formal
Methods to Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New York,
NY, USA, 836–850. https://doi.org/10.1145/3477132.3483540

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative research in psychology 3,
2 (2006), 77–101.

[9] John Brooke et al. 1996. SUS-A quick and dirty usability scale. Usability evaluation in industry 189, 194 (1996), 4–7.
[10] Stephen Cass. 2024. Top Programming Languages 2024 - IEEE Spectrum. https://spectrum.ieee.org/top-programming-

languages-2024
[11] Koen Claessen and John Hughes. 2000. QuickCheck: a lightweight tool for random testing of Haskell programs. In

Proceedings of the fifth ACM SIGPLAN international conference on Functional programming. 268–279.
[12] Anastasia Danilova. 2022. How to Conduct Security Studies with Software Developers. Ph. D. Dissertation. Universitäts-

und Landesbibliothek Bonn.
[13] Matthew C. Davis, Emad Aghayi, Thomas D. Latoza, Xiaoyin Wang, Brad A Myers, and Joshua Sunshine. 2023. What’s

(Not) Working in Programmer User Studies? ACM Trans. Softw. Eng. Methodol. 32, 5, Article 120 (jul 2023), 32 pages.
https://doi.org/10.1145/3587157

[14] Matthew C. Davis, Sangheon Choi, Sam Estep, Brad A. Myers, and Joshua Sunshine. 2023. NaNofuzz: A Usable Tool
for Automatic Test Generation. In Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 2023). Association for Computing Machinery, New
York, NY, USA, 1114–1126. https://doi.org/10.1145/3611643.3616327

[15] Matthew C. Davis, Amy Wei, Sangheon Choi, and Sam Estep. 2024. NaNofuzz - Visual Studio Marketplace. https:
//marketplace.visualstudio.com/items?itemName=penrose.nanofuzz [Online; accessed 2024-09-01].

[16] Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine. 2024. Replication package for TerzoN study.
https://figshare.com/s/9acd5b6c1033d53840d1

[17] Nicolas Dubien. 2024. dubzzz/fast-check. https://github.com/dubzzz/fast-check original-date: 2017-10-30T23:41:11Z.
[18] Nicolas Dubien. 2024. fast-check. https://www.npmjs.com/package/fast-check
[19] Nicolas Dubien. 2024. fast-check official documentation | fast-check. https://fast-check.dev/
[20] Eduard Enoiu and Robert Feldt. 2021. Towards Human-Like Automated Test Generation: Perspectives from Cognition

and Problem Solving. In 2021 IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). 123–124. https://doi.org/10.1109/CHASE52884.2021.00026

[21] Marc Fisher, Mingming Cao, Gregg Rothermel, Curtis R Cook, and Margaret M Burnett. 2002. Automated test case
generation for spreadsheets. In Proceedings of the 24th International Conference on Software Engineering (ICSE). IEEE,
141–151.

[22] Marc Fisher, Gregg Rothermel, Darren Brown, Mingming Cao, Curtis Cook, and Margaret Burnett. 2006. Integrating
automated test generation into the WYSIWYT spreadsheet testing methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM) 15, 2 (2006), 150–194.

[23] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE Transactions on Software Engineering 39, 2
(Feb. 2013), 276–291. https://doi.org/10.1109/TSE.2012.14

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/s10664-021-10072-8
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1145/3477132.3483540
https://spectrum.ieee.org/top-programming-languages-2024
https://spectrum.ieee.org/top-programming-languages-2024
https://doi.org/10.1145/3587157
https://doi.org/10.1145/3611643.3616327
https://marketplace.visualstudio.com/items?itemName=penrose.nanofuzz
https://marketplace.visualstudio.com/items?itemName=penrose.nanofuzz
https://figshare.com/s/9acd5b6c1033d53840d1
https://github.com/dubzzz/fast-check
https://www.npmjs.com/package/fast-check
https://fast-check.dev/
https://doi.org/10.1109/CHASE52884.2021.00026
https://doi.org/10.1109/TSE.2012.14

FSE089:22 Matthew C. Davis, Amy Wei, Brad A. Myers, and Joshua Sunshine

[24] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. 2015. Does automated unit test generation
really help software testers? a controlled empirical study. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24, 4 (2015), 1–49.

[25] GitHub. 2023. GitHub Codespaces. https://github.com/features/codespaces. [Online; accessed 2023-07-21].
[26] Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein, Benjamin C. Pierce, and Andrew Head. 2024. Property-Based

Testing in Practice. In Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3597503.3639581

[27] Harrison Goldstein, Joseph W Cutler, Adam Stein, Benjamin C Pierce, and Andrew Head. 2022. Some Problems with
Properties. In Proc. Workshop on the Human Aspects of Types and Reasoning Assistants (HATRA).

[28] Google DevOps Research and Assessment. 2024. 2024 State of DevOps Report. Technical Report 2024. Google.
[29] Giovanni Grano, Simone Scalabrino, Harald C Gall, and Rocco Oliveto. 2018. An empirical investigation on the read-

ability of manual and generated test cases. In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 348–3483.

[30] Alex Groce, Todd Kulesza, Chaoqiang Zhang, Shalini Shamasunder, Margaret Burnett, Weng-Keen Wong, Simone
Stumpf, Shubhomoy Das, Amber Shinsel, Forrest Bice, and Kevin McIntosh. 2014. You Are the Only Possible Oracle:
Effective Test Selection for End Users of Interactive Machine Learning Systems. IEEE Transactions on Software
Engineering 40, 3 (March 2014), 307–323. https://doi.org/10.1109/TSE.2013.59

[31] Jerry L. Hintze and Ray D. Nelson. 1998. Violin Plots: A Box Plot-Density Trace Synergism. The American Statistician
52, 2 (May 1998), 181–184. https://doi.org/10.1080/00031305.1998.10480559

[32] ISO. 2018. Ergonomics of human-system interaction—Part 11: Usability: Definitions and concepts ISO 9241–11: 2018
(en).

[33] Pankaj Jalote. 2008. A concise introduction to software engineering. Springer Science & Business Media.
[34] Amy J Ko, Thomas D LaToza, and Margaret M Burnett. 2015. A practical guide to controlled experiments of software

engineering tools with human participants. Empirical Software Engineering 20, 1 (2015), 110–141.
[35] Jeshua S Kracht, Jacob Z Petrovic, and Kristen R Walcott-Justice. 2014. Empirically evaluating the quality of auto-

matically generated and manually written test suites. In 2014 14th International Conference on Quality Software. IEEE,
256–265.

[36] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen, Chenyang Lyu, Chunming Wu, Raheem
Beyah, Peng Cheng, et al. 2021. UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating Fuzzers..
In USENIX Security Symposium. 2777–2794.

[37] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2024. A Large-Scale Survey on the Usability of AI Programming
Assistants: Successes and Challenges. In Proceedings of the IEEE/ACM 46th International Conference on Software
Engineering (ICSE ’24). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3597503.3608128

[38] David R. MacIver, Zac Hatfield-Dodds, and many other contributors. 2019. Hypothesis: A new approach to property-
based testing. https://doi.org/10.21105/joss.01891

[39] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J Schwartz, and Maverick
Woo. 2019. The art, science, and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312–2331.

[40] Cyrus R. Mehta and Nitin R. Patel. 1983. A Network Algorithm for Performing Fisher’s Exact Test in r × c Contingency
Tables. J. Amer. Statist. Assoc. 78, 382 (1983), 427–434. https://doi.org/10.2307/2288652 Publisher: [American Statistical
Association, Taylor & Francis, Ltd.].

[41] Microsoft. 2023. Overview of Microsoft IntelliTester. https://learn.microsoft.com/en-us/visualstudio/test/intellitest-
manual/. [Online; accessed 2023-01-27].

[42] Brad A Myers. 1994. Challenges of HCI Design and Implementation. Interactions 1, 1 (jan 1994), 73–83. https:
//doi.org/10.1145/174800.174808

[43] Brad A Myers, Amy J Ko, Thomas D LaToza, and YoungSeok Yoon. 2016. Programmers are users too: Human-centered
methods for improving programming tools. Computer 49, 7 (2016), 44–52.

[44] Mathieu Nassif, Alexa Hernandez, Ashvitha Sridharan, and Martin P Robillard. 2021. Generating unit tests for
documentation. IEEE Transactions on Software Engineering (2021).

[45] Sebastian P Ng, Tafline Murnane, Karl Reed, D Grant, and Tsong Yueh Chen. 2004. A preliminary survey on software
testing practices in Australia. In 2004 Australian Software Engineering Conference. Proceedings. IEEE, 116–125.

[46] Jakob Nielsen. 1994. Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems. 152–158.

[47] Gerard O’Regan. 2019. Fundamentals of Software Testing. In Concise Guide to Software Testing. Springer, 59–78.
[48] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007. Feedback-Directed Random Test

Generation. In 29th International Conference on Software Engineering (ICSE’07). IEEE, Minneapolis, MN, USA, 75–84.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

https://github.com/features/codespaces
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1109/TSE.2013.59
https://doi.org/10.1080/00031305.1998.10480559
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.21105/joss.01891
https://doi.org/10.2307/2288652
https://learn.microsoft.com/en-us/visualstudio/test/intellitest-manual/
https://learn.microsoft.com/en-us/visualstudio/test/intellitest-manual/
https://doi.org/10.1145/174800.174808
https://doi.org/10.1145/174800.174808

TerzoN: Human-in-the-Loop Software Testing with a Composite Oracle FSE089:23

https://doi.org/10.1109/ICSE.2007.37 ISSN: 0270-5257.
[49] Sebastiano Panichella, Annibale Panichella, Moritz Beller, Andy Zaidman, and Harald C Gall. 2016. The impact of

test case summaries on bug fixing performance: An empirical investigation. In Proceedings of the 38th international
conference on software engineering. 547–558.

[50] Marllos Paiva Prado and Auri Marcelo Rizzo Vincenzi. 2018. Towards cognitive support for unit testing: A qualitative
study with practitioners. Journal of Systems and Software 141 (2018), 66–84. https://doi.org/10.1016/j.jss.2018.03.052

[51] Nikitha Rao, Kush Jain, Uri Alon, Claire Le Goues, and Vincent J. Hellendoorn. 2023. CAT-LM Training Language
Models on Aligned Code And Tests. In 2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 409–420. https://doi.org/10.1109/ASE56229.2023.00193

[52] Darrel A. Regier, William E. Narrow, Diana E. Clarke, Helena C. Kraemer, S. Janet Kuramoto, Emily A. Kuhl, and David J.
Kupfer. 2013. DSM-5 Field Trials in the United States and Canada, Part II: Test-Retest Reliability of Selected Categorical
Diagnoses. American Journal of Psychiatry 170, 1 (Jan. 2013), 59–70. https://doi.org/10.1176/appi.ajp.2012.12070999
Publisher: American Psychiatric Publishing.

[53] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. 2015. Automated unit test generation during software develop-
ment: A controlled experiment and think-aloud observations. In Proceedings of the 2015 international symposium on
software testing and analysis. 338–349.

[54] Robert Rosenthal and Ralph L Rosnow. 2008. Essentials of behavioral research: Methods and data analysis.
[55] G. Rothermel, L. Li, and M. Burnett. 1997. Testing strategies for form-based visual programs. In Proceedings The Eighth

International Symposium on Software Reliability Engineering. 96–107. https://doi.org/10.1109/ISSRE.1997.630851
[56] G. Rothermel, L. Li, C. DuPuis, and M. Burnett. 1998. What you see is what you test: a methodology for testing

form-based visual programs. In Proceedings of the 20th International Conference on Software Engineering. 198–207.
https://doi.org/10.1109/ICSE.1998.671118 ISSN: 0270-5257.

[57] Karen J Rothermel, Curtis R Cook, Margaret M Burnett, Justin Schonfeld, Thomas RG Green, and Gregg Rothermel.
2000. WYSIWYT testing in the spreadsheet paradigm: An empirical evaluation. In Proceedings of the 2000 International
Conference on Software Engineering. ICSE 2000 the New Millennium. IEEE, 230–239.

[58] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale Panichella, Sebastiano Panichella, Danielle
Gonzalez, and Mehdi Mirakhorli. 2020. DeepTC-Enhancer: Improving the readability of automatically generated tests.
In Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. 287–298.

[59] Caitlin Sadowski and Thomas Zimmermann. 2019. Rethinking productivity in software engineering. Springer Nature.
[60] Novi Setiani, Ridi Ferdiana, and Rudy Hartanto. 2022. Understandable Automatic Generated Unit Tests using Semantic

and Format Improvement. In 2022 6th International Conference on Informatics and Computational Sciences (ICICoS).
122–127. https://doi.org/10.1109/ICICoS56336.2022.9930600

[61] James Somers. 2023. What if writing tests was a joyful experience? https://blog.janestreet.com/the-joy-of-expect-tests/.
[Online; accessed 2023-01-22].

[62] Facebook Open Source. 2023. Jest - Delightful Javascript Testing. https://jestjs.io/. [Online; accessed 2024-07-08].
[63] Tristan Teufel and contributors. 2022. Jest Runner. https://github.com/firsttris/vscode-jest-runner. [Online; accessed

2022-11-10].
[64] Priyadarshi Tripathy and Kshirasagar Naik. 2011. Software testing and quality assurance: theory and practice. John

Wiley & Sons.
[65] Vasudev Vikram, Caroline Lemieux, Joshua Sunshine, and Rohan Padhye. 2024. Can Large Language Models Write

Good Property-Based Tests? https://doi.org/10.48550/arXiv.2307.04346 arXiv:2307.04346 [cs].
[66] John Wrenn, Tim Nelson, and Shriram Krishnamurthi. 2021. Using Relational Problems to Teach Property-Based

Testing. The art science and engineering of programming 5, 2 (2021).
[67] Michał Zalewski. 2014. american fuzzy lop. https://lcamtuf.coredump.cx/afl/. https://lcamtuf.coredump.cx/afl/ [Online;

accessed 2023-06-27].

Received 2024-09-13; accepted 2025-04-01; revised 12 September 2024

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE089. Publication date: July 2025.

https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1016/j.jss.2018.03.052
https://doi.org/10.1109/ASE56229.2023.00193
https://doi.org/10.1176/appi.ajp.2012.12070999
https://doi.org/10.1109/ISSRE.1997.630851
https://doi.org/10.1109/ICSE.1998.671118
https://doi.org/10.1109/ICICoS56336.2022.9930600
https://blog.janestreet.com/the-joy-of-expect-tests/
https://jestjs.io/
https://github.com/firsttris/vscode-jest-runner
https://doi.org/10.48550/arXiv.2307.04346
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Abstract
	1 Introduction
	2 The Composite Oracle
	3 The TerzoN Automatic Test Generator
	3.1 Generating Inputs
	3.2 Categorizing Outputs
	3.3 Presentation of Test Results
	3.4 User Interface
	3.5 Scope and Limitations

	4 Empirical Evaluation
	4.1 Method
	4.2 Treatments
	4.3 Tasks
	4.4 Participants
	4.5 Measurements
	4.6 Data Analysis
	4.7 Results

	5 Discussion
	5.1 TerzoN Generated More Tests and Organized the Test Results Effectively (T1)
	5.2 TerzoN Users Tested Effectively Using Multiple Oracles (T2)
	5.3 Generated Inputs May Need to Satisfy Complex Constraints (T3)
	5.4 TerzoN Made Common Tasks Efficient (T4)
	5.5 Both Tools Were Functionally Similar (T5)
	5.6 Users Who Rated Fast-check as More Usable Still Performed Better With TerzoN (T6)
	5.7 TerzoN Needs Further Improvement (T7)

	6 Threats to Validity of the Study
	7 Related Work
	8 Implications for testing researchers and tool designers
	9 Future Work
	10 Conclusion
	11 Data Availability
	Acknowledgments
	References

