
Escaping the Clone Zone:
Java Runtime-Managed Snapshots

Current and Future Work
Matthew C. Davis, Mark Hills

East Carolina University, Greenville, NC, USA
davismat16@students.ecu.edu, mhills@cs.ecu.edu

Abstract—Mutable objects shared across modules may lead
to unexpected results as changes to the object in one module
are visible to other modules sharing the object. It is common
practice in Java to defensively create a private copy of the
input object state via cloning, serialization, copy constructor, or
external library. No universal approach exists and each common
solution has limitations or problems. The subject of this paper is a
novel runtime-managed approach to declaratively unshare input
object state. This approach is evaluated using an experimental
OpenJDK 10. The paper summarizes the motivation for the work,
describes the experimental implementation, discusses ongoing
empirical work regarding desirable properties of the snapshot
function, and describes plans for future research.

I. BACKGROUND

An immutable object is characterized by the inability for
its abstract state to change [1, p.1816] after instantiation. An
example of an immutable type in Java is the String class [2,
p.21]. If clients request a mutated (changed) state, the String
object instance constructs and returns a new String object
instance with the desired abstract state. The abstract state of
the original String object instance remains unmodified.

Sharing immutable objects is safe due to their unchanging
abstract state characteristic: another module sharing the object
cannot unexpectedly change its state [2, p.116-117]. Immutable
objects cannot be corrupted, interfered with, or observed while
in an inconsistent state by other threads [3]. These properties
make immutable objects useful, fast, and safe to share across
threads in concurrent applications.

Software engineers rarely green-field an entire object land-
scape. In the author’s experience, system inputs and outputs
are often composed of existing types over which the software
engineer or architect lacks specification authority. In these
situations, shared mutable objects may not be universally
avoidable, and defensive steps must be adopted to prevent
unexpected modification to shared mutable object state.

Java 10 lacks a native and universal functionality to unshare
mutable object state with abstract and consistent semantics.
Clone is non-universal with under-specified semantics [4]–[6],
Serialize is non-universal and may throw unexpected runtime
errors [4], [5], and copy constructors are non-universal and
type-dependent; consequently, using shared mutable objects
in standard Java may require knowledge of an object’s actual
type and implementation to understand the options available
to protect shared object state from unexpected modification.

Further, if two otherwise-unrelated types implement a
particular interface as well as Cloneable, there is no guarantee
both underlying types implement the same clone() semantics
when the server method interacts with objects uniformly by
their apparent interface type. This problem similarly applies
to parameterized types and methods acting as a server for
disparate input types with unknown clone() semantics.

II. MOTIVATION

The motivation for this research is prompted by the reality
that existing options are not universal, have under-specified
behavior, or require external libraries [4]–[6]. For two decades,
software engineers have contended with these problems in
Java. Similar to past efforts to improve Java – notably Pizza’s
parametric abstraction enhancements [7] – it is apparent Java’s
present limitations are not necessarily a prediction of its future
capabilities. Offering plausible alternative paths forward is the
motivation for this research.

III. PREVIOUS WORK

The previous work [8] proposed and evaluated a new
__snap__ keyword for the Java Language Specification [9] as
a novel, intent-based declaration requiring the Java runtime to
unshare the state of the actual method parameter. The abstract
behavior of a formal method parameter declared with this
modifier may be intuitively understood as a guarantee the
object referenced in the actual parameter possesses an abstract
state that is, at method execution start, non-shared. The method
may subsequently share the object with collaborating methods
and objects during its execution – but at the time method
execution begins, the actual input object state is non-shared.

Two evaluations were conducted. The first evaluated a
transformation approach that was found to be unsuitable
due to non-universality and under-specified semantics of the
underlying methods available within standard Java [8, § 5.3].
The same issues exist for annotation-based approaches that
similarly rely on existing Java methods. A second, successful,
evaluation modified OpenJDK 10’s javac compiler to emit
a new 0xcb asnap opcode for __snap__-decorated method
parameters. At method execution, the 0xcb opcode instructs
the modified OpenJDK 10 HotSpot JVM to perform a memory
snapshot of the object at the top of the operand stack and
replaces the reference of the shared input object with a reference



to the unshared input object copy. This second evaluation
was a successful, minimal, experimental implementation for
evaluation purposes.

In Figure 1, the method designer intends to receive as input
an unshared view of objInput’s abstract state. Of course, the
method designer may choose to share this view with other
collaborating objects and methods by explicitly passing the
object outside the method as a reference or method parameter.
But in the initial case, the addAll() method alone has visibility
to the point-in-time state of objInput at the time the actual
parameter is loaded at the start of method execution. To be
clear, the intent is not to make mutable objects immutable,
but rather to unshare mutable state within a specific method
context as required by the method designer.

Steady-state benchmarking [8, § 7.3.3] illustrated the poor
performance of serialization as shown in Figure 2. To improve
plot scale, Figure 3 omits Serialization. This second plot shows
Copy Constructor’s penalty at the mean relative to Snap, which
shows a penalty at the mean relative to clone(). HotSpot’s
Clone() is heavily optimized by many engineers across years
of development. Snap is not optimized; however, it benchmarks
as more performant than copy constructor and serialization.

This approach was shown to be performant relative to the
extant alternatives and frees the method designer from the
tricky task of predicting the underlying actual type of the
object for the purposes of determining how best to copy it via
clone, serialize, copy constructor, etc.

IV. CURRENT WORK

Frequency of Practice: As of this writing, the relative
frequency of the existing methods to unshare mutable object
state does not appear to be well-understood. Preliminary work
is underway to analyze publicly-available Java repositories such

1 // Snap/unshare objInput state prior to iterating
2 public void addAll(__snap__ ArrayList<String> objInput) {
3 for(String str : objInput) {
4 this.add(str);
5 }
6 }

Fig. 1. snap example

Clone() Snap Serialize Copy
0

200000

400000

600000

800000

1e+006

1.2e+006

1.4e+006

Small Object Performance in ns (n=60)

Clone() Snap Serialize Copy
0

5e+008

1e+009

1.5e+009

Large Object Performance in ns (n=60)

Fig. 2. Benchmarking Results - Violin Plot - w/ Serialization

as GitHub to assess the relative frequency of usage. Source code
analysis using Rascal MPL [10] is expected to be preferable
to bytecode analysis due to (a) the extant functionality within
Rascal for Java analysis, (b) the fewer steps needed to draw
conclusions on programmer practice when analyzing source
code relative to bytecode, and (c) the sufficient quantity of Java
code publicly available. Identifying the use of copy constructors
and common third party copy libraries will be undertaken.

Depth guarantee: The currently-implemented abstraction
was intended for research and is limited to snapshotting two
layers of the object graph, similar to some implementations
of clone(). An empirical study to determine the distribution
of typical object graph depths is in the planning stages.
Snapshotting the entire graph presently appears to be the
optimal approach as it maximally unshares the object, but data
may refute or confirm this view. It is observed solutions such as
serialize, GSON, and cloning libraries choose to copy the entire
graph [4], [11], [12]. A further option is to let the method
designer decide the depth, but one must question how the
method designer would intelligently select the ”correct” depth
as the choice requires knowledge of type-specific behavior
similar to the conundrum present today in standard Java.

V. FUTURE WORK

Simplify Snapshot Load: Evaluate the tradeoffs of convert-
ing the aload/asnap/astore/aload pattern to one opcode.

Escape Analysis: Evaluate omitting snapshots when the
input object is fully captured.

JIT Compiler Support: The bytecode interpreter is adapted.
For optimal performance, c1 and c2 JIT support is also needed.

Platform Independence: Avoiding one native x64 routine
would result in platform independence.

Evaluate Predictable Behavior: It would be interesting to
determine via user study whether software engineers find the
__snap__ approach more predictable than extant approaches.

Type Exception: Excluding immutable, singleton, and enum
types from the snapshot process is future work.

Clone() Snap Copy
0

20000

40000

60000

80000

100000

120000

140000

Small Object Performance in ns (n=60)

Clone() Snap Copy
0

100000

200000

300000

400000

Large Object Performance in ns (n=60)

Fig. 3. Benchmarking Results - Violin Plot - w/o Serialization



Bytecode Verification: Implementation of bytecode verifi-
cation in HotSpot for 0xcb is future work.

Garbage Collection: The minimal implementation can fail
during garbage collection and its correction is future work.

Long-term work includes: adapting remaining OpenJDK
tools, evaluating differential snapshots and different block
sizes, omitting snapshots for immutable objects, reasoning
about object state over time, and further exploration of identity
relationships among snapshots of the same object.

REFERENCES

[1] B. H. Liskov and J. M. Wing, “A Behavioral Notion of Subtyping,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1811–1841, Nov.
1994. [Online]. Available: http://doi.acm.org/10.1145/197320.197383

[2] B. Liskov and J. Guttag, Program Development in Java: Abstraction,
Specification, and Object-Oriented Design, 1st ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000.

[3] “Immutable Objects (The JavaTMTutorials >> Essential Classes
> Concurrency),” Accessed: 2018-10-21. [Online]. Available: https:
//docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html

[4] “Java SE 10 & JDK 10 API Specification,” 2018, Accessed: 2018-
09-22. [Online]. Available: https://docs.oracle.com/javase/10/docs/api/
overview-summary.html

[5] V. Ruzicka, “Java Cloning Problems,” 2017, Accessed: 2018-09-22. [On-
line]. Available: https://www.vojtechruzicka.com/java-cloning-problems/

[6] J. Bloch, Effective Java, 3rd ed. Addison-Wesley Professional, 2017.
[7] M. Odersky and P. Wadler, “Pizza into Java: Translating theory into

practice,” in Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM, 1997, pp. 146–159.

[8] M. C. Davis, “Applying mutable object snapshots to a high-
level object-oriented language,” 2018. [Online]. Available: http:
//hdl.handle.net/10342/7032

[9] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, and D. Smith,
“The Java Language Specification: Java SE 10 Edition,” 2018, Accessed:
2018-09-16. [Online]. Available: https://docs.oracle.com/javase/specs/jls/
se10/html/index.html

[10] P. Klint, T. van der Storm, and J. J. Vinju, “RASCAL: A Domain Specific
Language for Source Code Analysis and Manipulation,” in Proceedings
of SCAM 2009. IEEE, 2009, pp. 168–177.

[11] “google/gson: A Java serialization/deserialization library to convert Java
Objects into JSON and back,” 2018, Accessed: 2018-10-02. [Online].
Available: https://github.com/google/gson

[12] K. Kougios and et. al., “kostaskougios/cloning: deep clone java
objects,” 2018, Accessed: 2018-10-02. [Online]. Available: https:
//github.com/kostaskougios/cloning

http://doi.acm.org/10.1145/197320.197383
https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html
https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://www.vojtechruzicka.com/java-cloning-problems/
http://hdl.handle.net/10342/7032
http://hdl.handle.net/10342/7032
https://docs.oracle.com/javase/specs/jls/se10/html/index.html
https://docs.oracle.com/javase/specs/jls/se10/html/index.html
https://github.com/google/gson
https://github.com/kostaskougios/cloning
https://github.com/kostaskougios/cloning

	Background
	Motivation
	Previous Work
	Current Work
	Future Work
	References

